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ABSTR AC T  
Compared to mobile robots equipped with multiple rollers, spherical robots can move in all 
directions and are superior in durability and in their ability to climb steps. Slippage between balls 
and rollers is a significant problem in friction drives. However, previously established roller-
driven ball kinematics model considers sliding on only two constraining rollers. In this research, 
we developed it, proposed a motion model of sphere with three-constraint rollers, and developed 
a mathematical model that simulates the angular velocity vector of the sphere and the slip vector 
at each contact point. And we considered the existence of an angular velocity vector of sphere 
adapted three constraint rollers from the viewpoint of forward kinematics and succeed 
demonstration of the trajectory of the endpoint of the angular velocity vector and slip velocity 
vector of sphere. 
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1. Introduction 

Spherical robots are widely used in robotics, such 
as multi-finger fingertip mechanism for hand robots, 
actuator transmission mechanisms for 
omnidirectional movement, and driving mobile 
robots. They are also used as driving rollers for 
omnidirectional movement mechanisms; there are 
various arrangements and spherical structures 
depending on the requirements of the movement 
mechanism. Figure 1 shows the roller contact type for 
the number of actuators (𝑵𝑵𝑹𝑹) per sphere. 

In the case of 𝑁𝑁𝑅𝑅 = 2, ACROBAT-S [1] (Figure 1(a)) 
and wheel chair [2] (Figure 1(b)) with sphere kinematics 
are developed for transportation service. The 
omnidirectional locomotion condition is that two 
rotational axes contact point with sphere are arranged 
along the great circle. Thus, the angular velocity vector 
of the sphere lies on a common plane parallel to the great 
circle of sphere. In this way, the roller arrangement 
conditions for omni directional spherical mobile robot 

are derived [3]. Furthermore, in this situation, the angular 
velocity vector of the sphere has two degrees of freedom.   
Using this theory, spherical robot transfer problem is 
considered in [4]-[7], as models don’t consider slipping.  

As shown in Figure 1(c), the examples of the ball-
holding mechanism are Musashi150 [8], RV-infinity 
[9], and NuBot [10], which are designed to transport 
ball. Most teams in the RoboCupMSL(Middle-Size-
League) adapts a ball-holding mechanism with two 
rollers on the upper hemisphere to control the 
rotational motion of the ball. In most developments, 
roller arrangement that causes slippage (when the 
roller rotational axis don’t have slip in along a great 
circle) is adopted. Now there is slippage at contact 
point between the roller and the ball. It utilizes the 
ability to hold the ball due to frictional force. 
However, in the absence of a suitable mathematical 
model, the roller arrangement is heuristically 
determined experimentally. 

In a previous study, we used two constraint rollers 
that allowed the slipping to derive a mathematical 
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model for spherical rotational motion for forward 
kinematics [11]. This model is included in the 
kinematics of [3]. Furthermore, we employed 
experiment [12] to validate the model of [11]. 

In the case of 𝑁𝑁𝑅𝑅 = 3 , omnidirectional-wheeled 
mobile platform (OWMP) [13] has three-constraint 
rollers (Figure 1(d)), while a ball-balanced robot [14] has 
three unconstraint rollers (Figure 1(e)). In the example of 
an adapted unconstraint three rollers, ball-valanced robot 
can move in omni-direction [15]. Furthermore, it 
attempts to carry the load using couple of it ([15] and 
[16]). Ball valanced robot (Figure 1(e)) [14] has an 
adapted roller in the upper hemisphere, whereas Atras 
sphere [17] has an adapted roller in the lower hemisphere 
and can control sphere.  

Although there are three rollers, the sphere rotational 
dimensions are different because of the roller structure 
(constraint type or unconstraint type). Each constrained 
roller has less rotational diversity than the 
unconstrained rollers. However, the holding force is 
stronger than that of the unconstrained roller. The 
stability of the sphere rotational motion is higher in 
the case of three rollers than in the case of two rollers. 
OWMP [13] is used kinematic with roller 
arrangement restricted to the equator; we extended 
this kinematics to an arbitrary roller’s arrangement 
discussion. 
In this study, we modified the previously developed 
kinematic model [11] for the case of three-constraint 
rollers. And  presented  a  novel  mathematical model 
 

 
Figure 1.  A pattern of roller arrangement for sphere 
mobile robot driven by multiple rollers. 
 
about sphere rotational motion using three-constraint 
rollers that allows for slipping. Additionally, we simulate 
the angular velocity vector of the sphere, the sphere 
mobile speed vector, slip vector between the roller and 
the ball and the slip speed using forward kinematics. 

The rest of this study is as follows: Chapter 2 
discusses the existing space of angular velocity vectors 
on rollers and drives the sphere’s kinematics with three 
rollers. Chapter 3 conducted the simulation. Finally, we 
present the summary and future works. 

 
2. The sphere forward kinematics for three 
constraint rollers 

In this chapter, we introduce the angular velocity 
vector of the sphere to model the sphere’s rotational 
motion geometrically. 
2.1 Consideration of existence of angular velocity 
vector of the sphere 
(A) Case of single-constraint driving roller 

Table 1 shows variables list for this study. Figure 
2(a) shows existence space of angler velocity vector of 
sphere in a single-roller. The center 𝑶𝑶 of a sphere with 
radius r is fixed as the origin of the coordinate system 
𝛴𝛴 − 𝑥𝑥𝑥𝑥𝑥𝑥 . The constraint roller i have the center of 
gravity 𝑹𝑹𝒊𝒊 and 𝒒𝒒𝒊𝒊 denotes contact point between roller i 
and sphere. 𝜼𝜼𝒊𝒊  denotes the unit vector along the 
rotational axis of the constraint roller. 𝑶𝑶,  𝒒𝒒𝒊𝒊  and  𝑹𝑹𝒊𝒊 
are arranged on common line.  𝝎𝝎 denotes the angular 
velocity vector of the sphere. 𝑣𝑣𝑖𝑖 denotes the peripheral 
speed of the constraint roller i at 𝒒𝒒𝒊𝒊on sphere. 𝓥𝓥𝒊𝒊

𝑺𝑺(=
𝝎𝝎 × 𝒒𝒒𝑖𝑖) denote the velocity vector of the sphere with 
respect to 𝒒𝒒𝒊𝒊 .  
 
 

 
(a) 

  
 
 

 
(b) 

Figure 2 (a) The existence of sphere angler velocity 
vector in the case of a single-constraint roller. (b) Roller’s 
axis vector 𝜼𝜼𝒊𝒊 at contact point  𝒒𝒒𝒊𝒊 on the sphere 
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Figure 2 (a) The existence of sphere angler velocity 
vector in the case of a single-constraint roller. (b) Roller’s 
axis vector 𝜼𝜼𝒊𝒊 at contact point  𝒒𝒒𝒊𝒊 on the sphere 
 

 
 
 
 
 

 
 
 
 
 

 
(a) 

 
(b) 

Figure 3   Slip adjudication by the location 𝑙𝑙1(𝑣𝑣1)  , 
𝑙𝑙2(𝑣𝑣2) and 𝑙𝑙3(𝑣𝑣3). (a). A pair {𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3}  exists such that 
𝑙𝑙1(𝑣𝑣1), 𝑙𝑙2(𝑣𝑣2) and 𝑙𝑙3(𝑣𝑣3) have points in common. (b). A 
pair {𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3}   exists such that 𝑙𝑙1(𝑣𝑣1)  , 𝑙𝑙2(𝑣𝑣2)  and 
𝑙𝑙3(𝑣𝑣3)  have no points in common. 
 
𝒗𝒗𝒊𝒊𝑹𝑹  denotes velocity vector of the roller. 𝒆𝒆𝒊𝒊  denotes 
unit normal vector along 𝒗𝒗𝒊𝒊𝑹𝑹 . Because of  𝒆𝒆𝒊𝒊 ∈
𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬{𝒒𝒒𝒊𝒊,  𝜼𝜼𝒊𝒊} , 𝒆𝒆𝒊𝒊  and 𝒗𝒗𝒊𝒊𝑹𝑹  are satisfy 𝑣𝑣𝑖𝑖 = 〈 𝒗𝒗𝒊𝒊𝑹𝑹, 𝒆𝒆𝒊𝒊 〉 . 
Thus. Nonslip condition is 𝒗𝒗𝒊𝒊𝑺𝑺 = 𝒗𝒗𝒊𝒊𝑹𝑹  and 𝝎𝝎  can be 
satisfied as follow. 

  𝒗𝒗𝒊𝒊𝑺𝑺 = 𝝎𝝎 × 𝒒𝒒𝑖𝑖  (1)  

𝒆𝒆𝒊𝒊 ∈ 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬{𝒒𝒒𝒊𝒊,  𝜼𝜼𝒊𝒊} is the unit normal vector along 𝒗𝒗𝒊𝒊𝑹𝑹. 
Using 𝑣𝑣𝑖𝑖 = 〈 𝒗𝒗𝒊𝒊𝑹𝑹, 𝒆𝒆𝒊𝒊 〉 ( 𝒗𝒗𝒊𝒊𝑺𝑺 = 𝒗𝒗𝒊𝒊𝑹𝑹: nonslip condition) and 
Eq. (1), 𝑣𝑣𝑖𝑖 is represented as follows: 

𝑣𝑣𝑖𝑖  = 〈 𝒗𝒗𝒊𝒊𝑹𝑹, 𝒆𝒆𝒊𝒊 〉 =  −𝑟𝑟〈 𝜼𝜼𝒊𝒊,𝝎𝝎〉  (2)  

Thus, 𝝎𝝎 can be satisfied as Eq. (3). 

〈 𝜼𝜼𝒊𝒊 ,𝝎𝝎 〉 = −
𝑣𝑣𝑖𝑖
𝑟𝑟

 (3)  

𝝎𝝎 must be on 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬{𝜼𝜼𝒊𝒊,𝒒𝒒𝒊𝒊} and can be represented as 
a following line set 𝑙𝑙𝑖𝑖(𝑣𝑣𝑖𝑖) that is parallel to 𝒒𝒒𝑖𝑖 and passes 
through the end point of −(𝑣𝑣𝑖𝑖/𝑟𝑟)𝜼𝜼𝑖𝑖. 

𝑙𝑙𝑖𝑖(𝑣𝑣𝑖𝑖) = �𝝎𝝎� �−𝑣𝑣𝑖𝑖𝑟𝑟 � 𝜼𝜼𝑖𝑖 + 𝑡𝑡(1/𝑟𝑟)𝒒𝒒𝑖𝑖 , 𝑡𝑡 ∈ ℝ� (4)  
Furthermore, we set the roller contact point and 

rotational axis on the sphere. Contact point 𝒒𝒒𝒊𝒊 is defined 
as a polar coordinate as follows: 

𝒒𝒒𝒊𝒊
= �cos 𝜃𝜃2,𝑖𝑖 cos 𝜃𝜃1,𝑖𝑖 , cos 𝜃𝜃2,𝑖𝑖 sin𝜃𝜃1,𝑖𝑖 , sin𝜃𝜃2,𝑖𝑖�

𝑇𝑇
 (5)  

As shown in Figure 2(b), 𝜼𝜼𝒊𝒊 has a starting point at  𝑹𝑹𝒊𝒊 
(𝑶𝑶,  𝒒𝒒𝒊𝒊 and  𝑹𝑹𝒊𝒊 are on the same line).  𝑹𝑹𝒊𝒊 is located on the 
plane 𝜋𝜋𝑖𝑖 parallel to the tangent plane of the sphere at  𝒒𝒒𝒊𝒊. 
We put pair of vectors as normal orthogonal bases 
{𝑿𝑿𝒊𝒊,  𝒀𝒀𝒊𝒊} on 𝜋𝜋𝑖𝑖 at  𝑹𝑹𝒊𝒊. 

  Table 1   Variables list 
 

𝛴𝛴 − 𝑥𝑥𝑥𝑥𝑥𝑥 Three-dimensional coordinate system fixed the 
center of sphere 

〈𝒙𝒙,𝒚𝒚〉 Inner product with respect to 𝒙𝒙 and 𝒚𝒚 
‖𝒙𝒙‖ Norm of vector 𝒙𝒙 

span{𝒙𝒙,𝒚𝒚} Plane spanned by 𝒙𝒙 and 𝒚𝒚 
𝑶𝑶 Origin of 𝛴𝛴 − 𝑥𝑥𝑥𝑥𝑥𝑥(Center of sphere) 
𝒒𝒒𝒊𝒊 Contact point from sphere and roller 
𝜼𝜼𝑖𝑖 Unit vector of constraint-roller along the 

rotational axis direction 
𝝎𝝎 Sphere angular velocity vector  

 𝑹𝑹𝒊𝒊 Center of gravity of constraint roller 
𝒗𝒗𝒊𝒊𝑹𝑹 Velocity vector of constraint roller 𝑖𝑖 at 𝒒𝒒𝒊𝒊 
𝒗𝒗𝒊𝒊𝑺𝑺 Velocity vector of sphere at 𝒒𝒒𝒊𝒊 
𝜻𝜻𝒊𝒊,𝒌𝒌 Slip velocity of the sphere with respect to 𝒗𝒗𝒊𝒊𝑹𝑹  in 

k-th pattern of roller arrangement (𝑘𝑘 = 1,2,3,4) 
𝑽𝑽𝑘𝑘 Sphere mobile speed in k-th pattern of roller 

arrangement (𝑘𝑘 = 1,2,3,4) 
𝝎𝝎𝑘𝑘   Sphere angular velocity vector in k-th pattern of 

roller arrangement (𝑘𝑘 = 1,2,3,4) 
𝒆𝒆𝑖𝑖 Unit normal vector along 𝒗𝒗𝒊𝒊𝑹𝑹  

𝑽𝑽 Sphere robot velocity vector on 𝑥𝑥𝑥𝑥-plane 

𝜓𝜓𝑖𝑖 Roller arrangement angle that rotates 
counterclockwise with respect to 

𝑙𝑙𝑖𝑖(𝑣𝑣𝑖𝑖) Existence set of end point of 𝝎𝝎 with respect to 
𝑣𝑣𝑖𝑖 

𝑣𝑣𝑖𝑖 Peripheral speed of constraint roller 𝑖𝑖 
𝑟𝑟 Sphere robot radius 

𝜑𝜑 Sphere robot direction  
 𝑑𝑑𝑖𝑖 the minimal distances between point and line 
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 𝑿𝑿𝒊𝒊 = �
− sin𝜃𝜃1,𝑖𝑖
cos 𝜃𝜃1,𝑖𝑖

0
�,  𝒀𝒀𝒊𝒊 = �

− sin 𝜃𝜃2,𝑖𝑖 cos 𝜃𝜃1,𝑖𝑖
− sin𝜃𝜃2,𝑖𝑖 sin𝜃𝜃1,𝑖𝑖

cos𝜃𝜃2,𝑖𝑖

� (6)  

Thus,  𝜼𝜼𝒊𝒊  is linear combination of Eq. (6) and rotates 
counterclockwise with respect to 𝜓𝜓𝑖𝑖 . 

 𝜼𝜼𝒊𝒊 =  𝑿𝑿𝒊𝒊 cos𝜓𝜓𝑖𝑖 +  𝒀𝒀𝒊𝒊sin𝜓𝜓𝑖𝑖  (7)  
 
(B) Case of three-constraint driving rollers 

As shown in Figure 3, the locations between 𝑙𝑙1(𝑣𝑣1), 
𝑙𝑙2(𝑣𝑣2), and 𝑙𝑙3(𝑣𝑣3), which depend on parameters 𝑣𝑣1, 𝑣𝑣2 
and 𝜈𝜈3, are used to determine the rotational axis of the 
sphere. 

If a pair of 𝑣𝑣1 , 𝑣𝑣2 , and 𝜈𝜈3  exists such that 𝑙𝑙1(𝑣𝑣1) , 
𝑙𝑙2(𝑣𝑣2), and 𝑙𝑙3(𝑣𝑣3) have common points, the endpoint of 
𝝎𝝎  can be uniquely determined using Eq. (4) (as 𝑖𝑖 =
1,2,3) (Figure 3(a)). Based on Eq. (4) (as 𝑖𝑖 = 1,2,3),𝝎𝝎 
must be on 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬{𝒒𝒒𝟏𝟏,𝜼𝜼𝟏𝟏} ∩ 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬{𝒒𝒒𝟐𝟐,𝜼𝜼𝟐𝟐} ∩
𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬{𝒒𝒒𝟑𝟑,𝜼𝜼𝟑𝟑}. However, if a pair of 𝑣𝑣1, 𝑣𝑣2, and 𝑣𝑣3 exists 
such that 𝑙𝑙1(𝑣𝑣1) , 𝑙𝑙2(𝑣𝑣2) , and 𝑙𝑙3(𝑣𝑣3)  have common no 
points, slip can occur (Figure 3(b)). The sphere rotational 
axis is defined with respect to the arbitrary parameters 𝑣𝑣1, 
𝑣𝑣2, and 𝑣𝑣3. 
2.2.  Calculation method of optimal point in sum of the 
squared distances 

In this section, we calculate the optimal point 𝑸𝑸𝒐𝒐  =
(𝑥𝑥0 , 𝑦𝑦0 , 𝑧𝑧0 )(∈ ℝ3), which is determined such that the 
sum of the squared distances between 𝑸𝑸 = (𝑥𝑥, 𝑦𝑦, 𝑧𝑧)(∈
ℝ3) and 𝑙𝑙𝑖𝑖(𝑣𝑣𝑖𝑖)(𝑖𝑖 = 1, 2, 3) is minimized. 

As shown in Figure 3(b),  𝑑𝑑𝑖𝑖  denote the distances 
between 𝑸𝑸  and 𝑙𝑙𝑖𝑖(𝑣𝑣𝑖𝑖)  in each line 𝑙𝑙𝑖𝑖(𝑣𝑣𝑖𝑖)  . it is 
represented as follows (See Appendix (A)): 

 𝑑𝑑𝑖𝑖 = ��−
𝑣𝑣𝑖𝑖
𝑟𝑟
� 𝜼𝜼𝑖𝑖 +

〈𝑷𝑷𝒊𝒊,𝑸𝑸〉
𝑟𝑟2

𝑷𝑷𝑖𝑖 − 𝑸𝑸� (8)  

Therefore. Sum of the squared distances is represented as 
follow: 

𝐿𝐿(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =  𝑑𝑑1
2+ 𝑑𝑑2

2+ 𝑑𝑑3
2 (9)  

(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = (𝑥𝑥0 , 𝑦𝑦0 , 𝑧𝑧0 ) such that 𝐿𝐿(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) is minimal 
value 𝐴𝐴10 − 𝐵𝐵82/4𝐵𝐵2  is satisfy as following value 
(𝑥𝑥0 , 𝑦𝑦0 , 𝑧𝑧0 ) (See Appendix(B)).  

𝑧𝑧0 = −
𝐶𝐶9

2𝐶𝐶3
 (10)  

𝑦𝑦0 =
𝐵𝐵5𝐶𝐶9 − 2𝐶𝐶3𝐴𝐴8

4𝐵𝐵2𝐶𝐶3
 (11)  

𝑥𝑥0 =
1

8𝐴𝐴1𝐵𝐵2𝐶𝐶3
(−𝐴𝐴4𝐵𝐵5𝐶𝐶9 + 2𝐴𝐴4𝐵𝐵8𝐶𝐶3

+ 2𝐴𝐴6𝐵𝐵2𝐶𝐶9 − 4𝐴𝐴7𝐵𝐵2𝐶𝐶3) 
(12)  

Where 

𝐶𝐶3 = 𝐵𝐵3 −
𝐵𝐵52

4𝐵𝐵2
,𝐶𝐶9 = 𝐵𝐵9 −

𝐵𝐵5𝐵𝐵8
2𝐵𝐵2

,𝐶𝐶10 = 𝐵𝐵10 −
𝐵𝐵82

4𝐵𝐵2
 

 (13)  
Where 

  𝐵𝐵2 = 𝐴𝐴2 −
𝐴𝐴42

4𝐴𝐴1
,𝐵𝐵3 = 𝐴𝐴3 −

𝐴𝐴62

4𝐴𝐴1
,𝐵𝐵5 = 𝐴𝐴5 −

𝐴𝐴4𝐴𝐴6
2𝐴𝐴1

 

𝐵𝐵8 = 𝐴𝐴8 −
𝐴𝐴4𝐴𝐴7
2𝐴𝐴1

,𝐵𝐵9 = 𝐴𝐴9 −
𝐴𝐴6𝐴𝐴7
2𝐴𝐴1

,𝐵𝐵10 = 𝐴𝐴10 −
𝐴𝐴72

4𝐴𝐴1
 

 (14)  
Where 
𝐴𝐴10 = 𝐿𝐿(0,0,0) 

𝐴𝐴1 =
1
2
�𝐿𝐿(−1,0,0) + 𝐿𝐿(1,0,0) − 2𝐿𝐿(0,0,0)� 

𝐴𝐴2 =
1
2
�𝐿𝐿(0,−1,0) + 𝐿𝐿(0,1,0) − 2𝐿𝐿(0,0,0)� 

𝐴𝐴3 =
1
2
�𝐿𝐿(0,0,−1) + 𝐿𝐿(0,0,1) − 2𝐿𝐿(0,0,0)� 

𝐴𝐴7 =
1
2
�𝐿𝐿(1,0,0) − 𝐿𝐿(−1,0,0)� 

𝐴𝐴8 =
1
2
�𝐿𝐿(0,1,0) − 𝐿𝐿(0,−1,0)� 

𝐴𝐴9 =
1
2
�𝐿𝐿(0,0,1) − 𝐿𝐿(0,0,−1)� 

𝐴𝐴4 =
1
4
�𝐿𝐿(1,1,0) − 𝐿𝐿(1,−1,0) − 𝐿𝐿(−1,1,0)

+ 𝐿𝐿(−1,−1,0)� 

𝐴𝐴5 =
1
4
�𝐿𝐿(0,1,1) − 𝐿𝐿(0,1,−1) − 𝐿𝐿(0,−1,1)

+ 𝐿𝐿(0,−1,−1)� 

𝐴𝐴6 =
1
4
�𝐿𝐿(1,0,1) − 𝐿𝐿(−1,0,1) − 𝐿𝐿(1,0,−1)

+ 𝐿𝐿(−1,0,−1)� 

(15)  

2.3   Forward kinematics of sphere rotational motion 
We defined forward kinematics as input 𝑣𝑣𝑖𝑖(𝑖𝑖 =

1, 2, 3)  →  output 𝑽𝑽 .  The measured sphere robot 
direction angle from 𝑥𝑥 -axis denotes 𝜑𝜑  and defined 
interval as 0° ≤ 𝜑𝜑 < 360° . The sphere mobile velocity 
vector on the 𝑥𝑥𝑥𝑥-plane denotes 𝑽𝑽. Because that𝝎𝝎 =
 �𝜔𝜔𝑥𝑥 ,𝜔𝜔𝑦𝑦 ,𝜔𝜔𝑧𝑧�

𝑇𝑇
 is perpendicular to  𝑽𝑽 , The forward 

kinematics is represented as follows: 
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      ‖𝑽𝑽‖ = 𝑟𝑟�𝜔𝜔𝑥𝑥2 + 𝜔𝜔𝑦𝑦2 (16)  

𝜑𝜑

=

⎩
⎨

⎧ cos−1 �𝜔𝜔𝑦𝑦/�𝜔𝜔𝑥𝑥2 + 𝜔𝜔𝑦𝑦2�  (𝜔𝜔𝑥𝑥 < 0)

 360° − cos−1 �𝜔𝜔𝑦𝑦/�𝜔𝜔𝑥𝑥2 + 𝜔𝜔𝑦𝑦2�  (𝜔𝜔𝑥𝑥 ≥ 0
 

 (17)  
 

3. Simulation 
This chapter presents the simulation results, including 

the trajectory of the endpoint of the sphere angler 
velocity vector 𝝎𝝎𝑘𝑘, the sphere mobile velocity vector 𝑽𝑽𝑘𝑘, 
and the slip vector 𝜻𝜻𝒊𝒊,𝒌𝒌 and slip speed ‖𝜻𝜻𝒌𝒌‖ in k-th (𝑘𝑘 =
1,2,3,4) roller arrangement patterns in the case in 
which a regular triangle (𝜃𝜃1,1 , 𝜃𝜃1,2 , 𝜃𝜃1,3)= (30°, 150°,
270°)  and 𝜓𝜓𝑖𝑖 = 0° ( 𝑖𝑖 = 1,2,3 ) are fixed and 𝜃𝜃2,𝑖𝑖  is 
parameter as 0° 〜30°. The patterns are set up by 𝜃𝜃2,𝑖𝑖 
( 𝑖𝑖 = 1,2,3,4 ) as follows: Pattern I (𝑘𝑘 = 1, 𝜃𝜃2,𝑖𝑖 = 0° ), 
Pattern Ⅱ (𝑘𝑘 = 2, 𝜃𝜃2,𝑖𝑖 = 10°), Pattern Ⅲ (𝑘𝑘 = 3, 𝜃𝜃2,𝑖𝑖 =
20°), Pattern Ⅳ (𝑘𝑘 = 4, 𝜃𝜃2,𝑖𝑖 = 30°). 

As input roller speed, we define function 𝑣𝑣1(𝜑𝜑) =
sin(𝜑𝜑 + 240°) , 𝑣𝑣2(𝜑𝜑) = sin(𝜑𝜑 + 120°)  and 𝑣𝑣3(𝜑𝜑) =
sin𝜑𝜑 such that output: ‖𝑽𝑽1‖ = 1 [m/s].  

As output, 𝝎𝝎𝑘𝑘 , 𝑽𝑽𝑘𝑘 , 𝜻𝜻1,𝑘𝑘 , 𝜻𝜻2,𝑘𝑘 , and 𝜻𝜻3,𝑘𝑘  (𝑘𝑘 = 1,2,3,4) 
were indicated, such as Pattern I [𝑘𝑘 = 1; green curve], 
Pattern Ⅱ [𝑘𝑘 = 2; red curve], Pattern Ⅲ [𝑘𝑘 = 3; blue 
curve], and Pattern IV [𝑘𝑘 = 4; violet curve] (Figure 4-9). 
They were calculated using Eqs. (10)-(12) and (16), 
respectively. 

As shown in Figure 4, 𝝎𝝎𝑘𝑘 (𝑘𝑘 = 1,2,3,4) draws circle 
trajectories and gets a small radius in turn. 

As shown in Figure 5, 𝑽𝑽𝑘𝑘 (𝑘𝑘 = 1,2,3,4) draws circle 
trajectories and gets a common center and small 
radius in turn. 

As shown in Figure 6-8, 𝜻𝜻𝒊𝒊,𝟏𝟏 is the only origin (𝜻𝜻𝒊𝒊,𝟏𝟏 =
𝟎𝟎) due to Pattern I (nonslip case), but 𝜻𝜻𝒊𝒊,𝟐𝟐 , 𝜻𝜻𝒊𝒊,𝟑𝟑, and 𝜻𝜻𝒊𝒊,𝟒𝟒 
draw ellipsoid trajectories and get a large radius in 
turn. In this way, 𝑽𝑽𝑘𝑘  (or 𝝎𝝎𝑘𝑘  ) and 𝜻𝜻𝒊𝒊,𝒌𝒌  are trade-off 
effects. 

As shown in Figure 9, because Pattern I [𝑘𝑘 = 1 : 
nonslip case], �𝜻𝜻𝟏𝟏,𝟏𝟏�, �𝜻𝜻𝟐𝟐,𝟏𝟏�, and  �𝜻𝜻𝟑𝟑,𝟏𝟏� = 0 [m/s]. 

Three functions �𝜻𝜻𝟏𝟏,𝒌𝒌� , �𝜻𝜻𝟐𝟐,𝒌𝒌� , and �𝜻𝜻𝟑𝟑,𝒌𝒌�  with 
respect to 𝜑𝜑 are cyclical functions of 2𝜋𝜋/3. 
�𝜻𝜻𝟏𝟏,𝒌𝒌�  (𝑘𝑘 = 2, 3, 4) have minimal values of 0.03, 

0.10, and 0.19 [m/s], respectively, when 𝜑𝜑 = 𝜋𝜋/6, 7𝜋𝜋/

6[rad]. �𝜻𝜻𝟏𝟏,𝒌𝒌�(𝑘𝑘 = 2, 3, 4) have maximal values of 0.16, 
0.30, and 0.40 [m/s], respectively, when 𝜑𝜑 = 2𝜋𝜋/3, 5𝜋𝜋/
3. 

�𝜻𝜻𝟐𝟐,𝒌𝒌�(𝑘𝑘 = 2, 3, 4) has minimal values of 0.03, 0.10, 
and 0.19 [m/s], respectively, when 𝜑𝜑 =  5𝜋𝜋/6, 11𝜋𝜋/6.  

�𝜻𝜻𝟐𝟐,𝒌𝒌�(𝑘𝑘 =  2, 3, 4) has maximal values of 0.16, 0.30, 
and 0.40 [m/s], respectively, when 𝜑𝜑 = 𝜋𝜋/3, 4𝜋𝜋/3. 

�𝜻𝜻𝟑𝟑,𝒌𝒌�(𝑘𝑘 = 2, 3, 4) has minimal values of 0.03, 0.10, 
and 0.19 [m/s], respectively, when 𝜑𝜑 = 𝜋𝜋/2, 3𝜋𝜋/2, and 
�𝜻𝜻𝟑𝟑,𝒌𝒌�(𝑘𝑘 =  2, 3, 4) has maximal values of 0.16, 0.30, 
and 0.40 [m/s], respectively, when 𝜑𝜑 = 0,𝜋𝜋, 2𝜋𝜋 

In this way, the direction case in which slip speed is 
maximal is perpendicular to the direction case in which 
slip speed is minimal. 
 
4. Conclusion 

In this study, we considered the existence of an 
angular velocity vector of sphere driven by three 
rollers from the viewpoint of forward kinematics and 
demonstrated the trajectory of the endpoint of the 
angular velocity vector and slip velocity vector.   

In the future research, we want to conduct the inverse 
kinematics and consider existence space for input 
rollers speed. 
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Appendix 
(A)     Calculation of distance between 𝑸𝑸 and 𝒍𝒍𝒊𝒊(𝝂𝝂𝒊𝒊) 
As shown in Figure 10, It is determined distance 𝑑𝑑𝑖𝑖 such 
that 𝑙𝑙𝑖𝑖(𝑣𝑣𝑖𝑖) ⊥ 𝑸𝑸𝑸𝑸𝒊𝒊��������⃗  (𝑸𝑸𝑖𝑖 ∈ 𝑙𝑙𝑖𝑖(𝑣𝑣𝑖𝑖), 𝑸𝑸 ∈ 𝑹𝑹3). Using Eq. (4) 
and inner product expand formula, 

       0 = 〈𝒒𝒒𝒊𝒊 ,𝑸𝑸𝑖𝑖 − 𝑸𝑸〉 

    = 〈𝒒𝒒𝒊𝒊 , �−
𝑣𝑣𝑖𝑖
𝑟𝑟
� 𝜼𝜼𝑖𝑖 +

𝑡𝑡
𝑟𝑟
𝒒𝒒𝑖𝑖 − 𝑸𝑸〉 (A,1) 

     = �−
𝑣𝑣𝑖𝑖
𝑟𝑟
� 〈𝒒𝒒𝒊𝒊 ,𝜼𝜼𝑖𝑖〉 +

𝑡𝑡
𝑟𝑟
〈𝒒𝒒𝒊𝒊 ,𝒒𝒒𝑖𝑖〉 − 〈𝒒𝒒𝒊𝒊 ,𝑸𝑸〉 

 (A,2) 
From 〈𝒒𝒒𝒊𝒊,𝜼𝜼𝑖𝑖〉 = 0  and 〈𝒒𝒒𝒊𝒊,𝒒𝒒𝑖𝑖〉 = 𝑟𝑟2 , Eq. (A,2) can be 
simplified, and we obtain the value 𝑡𝑡 that minimizes the 
distance between 𝑸𝑸 and 𝑙𝑙𝑖𝑖(𝑣𝑣𝑖𝑖) as follows: 
⟺  0 = 𝑟𝑟𝑟𝑟 − 〈𝒒𝒒𝒊𝒊 ,𝑸𝑸〉 ⟺ 𝑡𝑡 = 〈𝒒𝒒𝒊𝒊 ,𝑸𝑸〉/𝑟𝑟 (A,3) 

Substituting  𝑸𝑸𝑯𝑯𝒊𝒊��������⃗ = 𝑶𝑶𝑯𝑯𝒊𝒊��������⃗ − 𝑶𝑶𝑸𝑸������⃗  with Eq. (A,3), 
 

𝑸𝑸𝑯𝑯𝒊𝒊��������⃗ = �−
𝑣𝑣𝑖𝑖
𝑟𝑟
� 𝜼𝜼𝑖𝑖 +

〈𝒒𝒒𝒊𝒊 ,𝑸𝑸〉
𝑟𝑟2

𝒒𝒒𝑖𝑖 − 𝑸𝑸 (A,4) 

Therefore. 

       𝑑𝑑𝑖𝑖 = ��−
𝑣𝑣𝑖𝑖
𝑟𝑟
� 𝜼𝜼𝑖𝑖 +

〈𝒒𝒒𝒊𝒊 ,𝑸𝑸〉
𝑟𝑟2

𝒒𝒒𝑖𝑖 − 𝑸𝑸� (A,5) 

 
Figure 10   Distances between 𝑸𝑸(∈ ℝ3) and 𝑙𝑙𝑖𝑖(𝑣𝑣𝑖𝑖) 

(B)     Calculation of optimal point 
First, based on the coefficients 𝐴𝐴1〜𝐴𝐴10 , 𝐿𝐿1(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) is 
represented as a quadratic equation with respect to, 𝑦𝑦 and 
𝑧𝑧 as follows: 

𝐿𝐿1(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝐴𝐴1𝑥𝑥2 + 𝐴𝐴2𝑦𝑦2 + 𝐴𝐴3𝑧𝑧2 (B,1) 

+𝐴𝐴4𝑥𝑥𝑥𝑥 + 𝐴𝐴5𝑦𝑦𝑦𝑦 + 𝐴𝐴6𝑧𝑧𝑧𝑧 + 𝐴𝐴7𝑥𝑥 + 𝐴𝐴8𝑦𝑦 + 𝐴𝐴9𝑧𝑧 + 𝐴𝐴10 

   
Figure 4 The trajectory of end point of 
angular velocity vector 𝝎𝝎𝑘𝑘(𝑘𝑘 =
1,2,3,4). 
 

Figure 5 The trajectory of end point of 
angler velocity vector of the sphere 
𝑽𝑽𝑘𝑘(𝑘𝑘 = 1,2,3,4). 

Figure 6 The trajectory of slip vector 
from sphere and roller 𝜻𝜻𝟏𝟏,𝒌𝒌(𝑘𝑘 =
1,2,3,4). 

   
Figure 7 The trajectory of slip vector 
from sphere and roller 𝜻𝜻𝟐𝟐,𝒌𝒌(𝑘𝑘 =
1,2,3,4). 

Figure 8 The trajectory of slip vector 
from sphere and roller 𝜻𝜻𝟑𝟑,𝒌𝒌(𝑘𝑘 =
1,2,3,4). 

Figure 9 The slip speed of slip vector 
from sphere and roller �𝜻𝜻𝟏𝟏,𝒌𝒌�, �𝜻𝜻𝟐𝟐,𝒌𝒌�, 
�𝜻𝜻𝟑𝟑,𝒌𝒌� (𝑘𝑘 = 1,2,3,4). 
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Based on Eq. (B,1), the following homogeneous equation 
is conducted. By solving Eq. (B,2), We obtain 𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴3, 
𝐴𝐴7, 𝐴𝐴8, 𝐴𝐴9 and 𝐴𝐴10. 

𝐿𝐿(0,0,0) = 𝐴𝐴10 
𝐿𝐿(1,0,0) = 𝐴𝐴1 + 𝐴𝐴7 + 𝐴𝐴10 
𝐿𝐿(−1,0,0) = 𝐴𝐴1 − 𝐴𝐴7 + 𝐴𝐴10 
𝐿𝐿(0,1,0) = 𝐴𝐴2 − 𝐴𝐴8 + 𝐴𝐴10 
𝐿𝐿(0,−1,0) = 𝐴𝐴2 − 𝐴𝐴8 + 𝐴𝐴10 
𝐿𝐿(0,0,1) = 𝐴𝐴3 − 𝐴𝐴9 + 𝐴𝐴10 
𝐿𝐿(0,0,−1) = 𝐴𝐴3 − 𝐴𝐴9 + 𝐴𝐴10 

(B,2) 

Using Eq. (B,1), following homogeneous equation is 
conducted. By solving Eq. (B,3), we get 𝐴𝐴4, 𝐴𝐴5 and 𝐴𝐴6. 

𝐿𝐿(1,1,0) = 𝐴𝐴1 + 𝐴𝐴2 + 𝐴𝐴4 + 𝐴𝐴7 + 𝐴𝐴8 + 𝐴𝐴10 
𝐴𝐴4 = 𝐿𝐿(1,1,0) − (𝐴𝐴1 + 𝐴𝐴2 + 𝐴𝐴7 + 𝐴𝐴8 + 𝐴𝐴10) 
𝐴𝐴5 = 𝐿𝐿(0,1,1) − (𝐴𝐴2 + 𝐴𝐴3 + 𝐴𝐴8 + 𝐴𝐴9 + 𝐴𝐴10) 
𝐴𝐴6 = 𝐿𝐿(1,0,1) − (𝐴𝐴1 + 𝐴𝐴3 + 𝐴𝐴7 + 𝐴𝐴9 + 𝐴𝐴10) 

(B,3) 

At first, Eq. (B,1) is represented as follows by completing 
the square with respect to 𝑥𝑥. 

𝐿𝐿2(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝐴𝐴1(𝑥𝑥 +
𝐴𝐴4𝑦𝑦 + 𝐴𝐴6𝑧𝑧 + 𝐴𝐴7

2𝐴𝐴1
)2 (B,4) 

+𝐵𝐵2𝑦𝑦2 + 𝐵𝐵3𝑧𝑧2 + 𝐵𝐵5𝑦𝑦𝑦𝑦 + 𝐵𝐵8𝑦𝑦 + 𝐵𝐵9𝑧𝑧 + 𝐵𝐵10 

At second, Eq. (B,4) is represented as follows by 
completing the square with respect to 𝑦𝑦 and 𝑧𝑧. 

𝐿𝐿3(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝐴𝐴1(𝑥𝑥 +
𝐴𝐴4𝑦𝑦 + 𝐴𝐴6𝑧𝑧 + 𝐴𝐴7

2𝐴𝐴1
)2 (B,5) 

+𝐵𝐵2(𝑦𝑦 +
𝐵𝐵5𝑧𝑧 + 𝐵𝐵8

2𝐵𝐵2
)2 + 𝐶𝐶3(𝑧𝑧 +

𝐶𝐶9
2𝐶𝐶3

)2 + 𝐶𝐶10 −
𝐶𝐶92

4𝐶𝐶3
 

(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = (𝑥𝑥0 ,𝑦𝑦0 , 𝑧𝑧0 ) such that 𝐿𝐿3(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) is minimal 
value 𝐶𝐶10 − 𝐵𝐵82/4𝐵𝐵2 is satisfied as this linear equation 
with respect to 𝑥𝑥0 , 𝑦𝑦0  and 𝑧𝑧0 . 

⎩
⎪⎪
⎨

⎪⎪
⎧𝑥𝑥0 +

𝐴𝐴4𝑦𝑦0 + 𝐴𝐴6𝑧𝑧0 + 𝐴𝐴7
2𝐴𝐴1

= 0

𝑦𝑦0 +
𝐵𝐵5𝑧𝑧0 + 𝐵𝐵8

2𝐵𝐵2
= 0

𝑧𝑧0 +
𝐶𝐶9

2𝐶𝐶3
= 0

 (B,6) 

Therefore. By solving Eq. (B,6), we get it. 
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