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ABSTR AC T  
In the nervous system, there is a broad variety of neuron types, each exhibiting distinct firing 
properties. Although these neurons are considered important, the understanding of their role in 
information processing remains limited. In this study, we constructed a simple network using a 
piecewise quadratic neuron (PQN) model that can reproduce a variety of neuronal activities. 
Further, we examined the effect of various neuronal dynamics on the success rate of a biologically 
plausible spike-pattern detection task. The simulation results showed that certain mathematical 
structures increased the success rate of spike-pattern detection. 
 
© 2022 The Author. Published by Sugisaka Masanori at ALife Robotics Corporation Ltd. 

                    This is an open access article distributed under the CC BY-NC 4.0 license 
(http://creativecommons.org/licenses/by-nc/4.0/). 

 

 

1. Introduction 

It has been reported that the nervous system contains a 
wide variety of neurons, each with diverse neuronal 
activities. For instance, in response to constant input, 
neurons in the regular spiking (RS) class show a decline 
in their firing frequency over time; this process is known 
as spike-frequency adaptation. In contrast, fast spiking 
(FS) neurons continue to fire at nearly the same 
frequency. Elliptic bursting (EB) and parabolic bursting 
(PB) classes switch between periods of intense firing and 
resting when exposed to a constant stimulus. Furthermore, 
Class II neurons in Hodgkin’s classification [1] start 
firing at a relatively high frequency when exposed to a 
gradually increasing stimulus, whereas Class I neurons 
start firing at almost zero frequency. Researchers have 
developed spiking neuron models that reproduce these 
diverse electrophysiological properties. For example, [2] 
presented the ionic-conductance-based neuron model 
that reproduces typical neuron classes in the cortex and 

thalamus, such as RS, FS, intrinsically bursting (IB), and 
low-threshold spike (LTS). [3] and [4] reproduced 
bursting neuron classes, such as elliptic bursting (EB) 
and parabolic bursting (PB). Additionally, qualitative 
neuron models that reproduce a variety of neuron classes 
have also been studied [5], [6], [7]. However, we still do 
not understand the role of these properties in how the 
nervous system processes information. This is largely 
because of the complexity of brain circuits and our 
limited understanding of how they process information. 
Moreover, technical hurdles in monitoring the activities 
of neurons in vivo make it challenging to study the 
contribution of electrophysiological properties in brain 
function. 

In this study, we conducted in silico simulations to 
examine the effect of diverse electrophysiological 
propertie on the learning task. We employed a simple and 
biologically plausible network structure proposed in 
previous studies [8], [9]. The piecewise quadratic neuron 
(PQN) model [7] was used as the spiking neuron model. 
This model stands out for its relatively low computational 
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demand and capacity to simulate a variety of 
electrophysiological properties. Its parameters were 
automatically determined using a fitting method [10], 
[11] based on metaheuristic algorithms. Despite the 
multitude of dynamics inherent to neuronal activities, this 
study primarily focused on the dynamics of the fast 
subsystem responsible for spike generation. We 
investigated the effect of changes in the dynamics of the 
fast subsystem on learning performance.  

The organization of the remainder of this paper is as 
follows: Section 2 presents the methodologies employed, 
Section 3 discusses the results of our simulations, and 
Section 4 provides a summary of this work and outlines 
potential directions for future research. 

2. Methods 

2.1. Network model 

Figure 1 illustrates the structure of the constructed 
network. In this network, the input nodes project to the 
output neurons through excitatory synapses. In addition, 
the output neurons inhibit each other through inhibitory 
synapses. The weights of the excitatory synapses vary 
depending on the spiking of input nodes and output 
neurons based on the spike-timing-dependent plasticity 
(STDP) rule, whereas the weights of the inhibitory 
synapses are constant. These network structures largely 
mirror those proposed in the preceding work [9]. The 
major distinctions are in the model of the output neurons. 
In contrast with the leaky integrate-and-fire (LIF) model 
used in [9], we employed the PQN model. In addition, we 
used a double exponential synapse model, and the 
number of the input nodes was decreased from 2000 to 
512. The stimulus input for the j-th output neuron is given 
by: 

𝐼𝐼𝑗𝑗𝑘𝑘 = 𝑝𝑝0�𝑤𝑤𝑗𝑗𝑗𝑗𝑒𝑒𝑥𝑥𝑗𝑗

512

𝑗𝑗=1

− 𝑝𝑝1 � 𝑤𝑤𝑗𝑗𝑗𝑗𝑗𝑗 𝑠𝑠𝑗𝑗

9

𝑗𝑗=1(𝑗𝑗≠𝑗𝑗)

 (1) 

where 𝑥𝑥𝑗𝑗  denotes the activation of the i-th input node 
with values of 1 or 0. 𝑠𝑠𝑗𝑗 represents the inhibitory synaptic 
current from the i-th neuron. 𝑤𝑤𝑗𝑗𝑗𝑗𝑒𝑒  represents the weight of 
the excitatory synapse from the i-th node to the j-th 
neuron, whereas 𝑤𝑤𝑗𝑗𝑗𝑗

𝑗𝑗  indicates the weight of the 
inhibitory synapse from the i-th neuron to the j-th neuron. 
The parameters 𝑝𝑝0  and 𝑝𝑝1  determine the impact of the 
excitatory and inhibitory inputs, respectively.  

Figure 2 illustrates an example of the input data, where 
three distinct spike patterns (represented by blue, green, 

 
Figure 1. Network structure. 

 
Figure 2. Example of the input data. 

and orange dots) are embedded within random spikes 
(depicted by gray dots). The method of generating the 
input data was the same as in that used in [9]. Initially, 
we fed 80 seconds of input data to the network for the 
learning phase. During this phase, the weights of the 
excitatory synapses were updated based on the STDP. 
This was followed by a test phase of 20 seconds to 
evaluate whether the output neurons detected the 
embedded spike patterns. A task was deemed successful 
if all spike patterns were detected by at least one output 
neuron with a probability of more than 90% during the 
test phase. 

The STDP learning rule at the excitatory synapses is 
given by 

∆𝑤𝑤𝑗𝑗𝑗𝑗𝑒𝑒 =  �
𝑎𝑎+ exp �

𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑗𝑗
𝜏𝜏+

�   if 𝑡𝑡𝑗𝑗 ≤ 𝑡𝑡𝑗𝑗 ,

𝑎𝑎− exp �−
𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑗𝑗
𝜏𝜏−

�   if 𝑡𝑡𝑗𝑗 > 𝑡𝑡𝑗𝑗.
 (2) 
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where 𝑡𝑡𝑗𝑗 and 𝑡𝑡𝑗𝑗 represent the times of the presynaptic and 
postsynaptic spikes, respectively.  
. The parameters 𝜏𝜏− and 𝜏𝜏+ determine the time constant 
of the long-term depression and potentiation, 
respectively. The parameters 𝑎𝑎+  and 𝑎𝑎−  control the 
learning rate.  

2.2. Neuron model 

The PQN model was designed to support a wide range of 
neuronal activities with relatively low computational 
expense. The equations for the PQN model in its two-
variable form are given by 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

=
𝜑𝜑
𝜏𝜏

(𝑓𝑓(𝑑𝑑) − 𝑛𝑛 + 𝐼𝐼0 + 𝑘𝑘𝐼𝐼𝑠𝑠𝑠𝑠𝑗𝑗𝑠𝑠), (3) 

 𝑑𝑑𝑛𝑛
𝑑𝑑𝑡𝑡

=
1
𝜏𝜏

(𝑔𝑔(𝑑𝑑) − 𝑛𝑛), (4) 

 
𝑓𝑓(𝑑𝑑) = �

𝑎𝑎𝑓𝑓𝑓𝑓�𝑑𝑑 − 𝑏𝑏𝑓𝑓𝑓𝑓�
2 + 𝑐𝑐𝑓𝑓𝑓𝑓

𝑎𝑎𝑓𝑓𝑓𝑓�𝑑𝑑 − 𝑏𝑏𝑓𝑓𝑓𝑓�
2 + 𝑐𝑐𝑓𝑓𝑓𝑓

 
(𝑑𝑑 < 0)
(𝑑𝑑 ≥ 0),

 (5) 

 
𝑔𝑔(𝑑𝑑) = �

𝑎𝑎𝑔𝑔𝑓𝑓�𝑑𝑑 − 𝑏𝑏𝑔𝑔𝑓𝑓�
2 + cgn

𝑎𝑎𝑔𝑔𝑓𝑓�𝑑𝑑 − 𝑏𝑏𝑔𝑔𝑓𝑓�
2 + 𝑐𝑐𝑔𝑔𝑓𝑓

 
�𝑑𝑑 < 𝑟𝑟𝑔𝑔�
�𝑑𝑑 ≥ 𝑟𝑟𝑔𝑔�,

 (6) 

where 𝑑𝑑  and 𝑛𝑛  denote the membrane potential and 
recovery variables, respectively. Parameter 𝐼𝐼0 is the bias 
constant. 𝐼𝐼stim represents the stimulus input, and 𝑘𝑘 is its 
scaling parameter. The parameters 𝜏𝜏  and 𝜑𝜑  are 
responsible for the time constants of the variables. The 
parameters 𝑟𝑟𝑔𝑔, 𝑎𝑎𝑥𝑥, 𝑏𝑏𝑥𝑥, and 𝑐𝑐𝑥𝑥, where 𝑥𝑥 is 𝑓𝑓𝑛𝑛, 𝑓𝑓𝑝𝑝, 𝑔𝑔𝑛𝑛, or 
𝑔𝑔𝑝𝑝, control the nullclines of the variables. Constants 𝑏𝑏𝑓𝑓𝑓𝑓, 
𝑐𝑐𝑓𝑓𝑓𝑓, 𝑏𝑏𝑔𝑔𝑓𝑓, and 𝑐𝑐𝑔𝑔𝑓𝑓, are determined by other parameters to 
ensure that the nullclines are continuous and smooth (see 
[7]). The synaptic current was calculated as follows: 

 𝑑𝑑𝑠𝑠
𝑑𝑑𝑡𝑡

= �α(1 − 𝑠𝑠)
−𝛽𝛽𝑠𝑠  

(𝑑𝑑 ≥ 0)
(𝑑𝑑 < 0),

 (6) 

where s denotes the synaptic current and the parameters 
α and β determine the time constants. Note that all 
variables and parameters are entirely abstract and devoid 
of physical units. 
  In this study, we focused on two key parameters 𝑎𝑎𝑔𝑔𝑛𝑛 
and 𝜑𝜑, which determine the mathematical structure of the 
fast subsystem. The parameter 𝑎𝑎𝑔𝑔𝑓𝑓 governs the slope of 
the left portion of the n-nullcline. For instance, reducing 
𝑎𝑎𝑔𝑔𝑓𝑓  from 0.75 to 0 decreased the slope on the n-
nullcline’s left portion and shifts the position of the 
bifurcation point rightwards (Figure 3 (A-B)). The 
parameter 𝜑𝜑 adjusts the time constant of v and influences 
the shape of the stable limit cycle. When 𝜑𝜑 is increased 
from  
. 

Figure 3. Examples of mathematical structures. 

Figure 4.  Selection of 𝐼𝐼0 and 𝜏𝜏 for the parameter set  
(𝑎𝑎𝑔𝑔𝑓𝑓, 𝜑𝜑 = 0, 1). 
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Figure 5. Success rate. 

Figure 6. Mathematical structures. (A) Y and inverse Y 
represent the bifurcation point when 𝑎𝑎𝑔𝑔𝑛𝑛 is 0 and -0.25, 
respectively. (B) The blue and purple dotted lines 
indicate the stable limit cycle when 𝑎𝑎𝑔𝑔𝑓𝑓  is 1 and 1.5, 
respectively.  
 
0.35 to 1, the trajectory expands particularly in the 
negative direction of the v-axis (Figure 3 (B-C)). Our 
examination encompassed twenty diverse parameter sets, 
each a unique pairing from a set of five distinct values for 
𝑎𝑎𝑔𝑔𝑓𝑓 (1.75, 0.75, 0.25, 0, and -0.25) and four 𝜑𝜑 (0.35, 0.5, 
1, and 1.5). 

In addition, the values of the parameters  𝐼𝐼0 and 𝜏𝜏 were 
chosen to have the highest success rate in each parameter 
set. As shown in Figure 4, we calculated the success rate 
while changing the parameters 𝐼𝐼0  and 𝜏𝜏  with fixed 𝑎𝑎𝑔𝑔𝑛𝑛 

and 𝜑𝜑 . The value of 𝐼𝐼0  was varied from -6.0 to 0 in 
increments of 0.4, and the value of 𝜏𝜏 was varied from 0.1 
to 1.6 in increments of 0.1. In total, 256 combinations 
were examined. For each case, the success rate was 
calculated by varying the number of patterns from 1 to 5. 
Twenty trials were conducted for each pattern, resulting 
in 100 trials. In this case, the success rate was highest at 
88% when  𝐼𝐼0 and τ were -2.8 and 0.8, respectively, and 
this value was recorded as the success rate for the 
parameter set (𝑎𝑎𝑔𝑔𝑓𝑓, 𝜑𝜑 = 0, 1). 
 All other parameters were shared across all parameter 
sets.  

3. Results 

The success rates associated with each parameter set are 
showed in Figure 5. The data suggested a trend: smaller 
values of 𝑎𝑎𝑔𝑔𝑓𝑓  and larger values of 𝜑𝜑  generally yield 
higher success rates. 

4. Conclusion and Discussion 

In this work, we devised twenty unique neuronal 
dynamical structures and examined their influence on the 
performance of a spatiotemporal pattern detection task. 
The findings indicated that superior performance was 
achieved when 𝑎𝑎𝑔𝑔𝑓𝑓  is smaller and 𝜑𝜑  is larger. As 𝑎𝑎𝑔𝑔𝑓𝑓 
decreases, the bifurcation point moves closer to v = 0. It's 
important to note that in the PQN network, the point at 
which v surpasses 0 is regarded as the spike timing for 
the STDP calculation. This is because the 
neurotransmitter release initiates when v transcends 0 in 
our synapse model. If the bifurcation point is in proximity 
to this point, the neurons tend to fire more quickly. Given 
the STDP curve's exponential decay nature, these faster-
firing neurons are likely to achieve a larger change in 
synaptic weight compared to their slower-firing 
counterparts. This could be the reason behind the higher 
success rates. When 𝑎𝑎𝑔𝑔𝑓𝑓 was decreased from 0 to -0.25, 
there was only a slight improvement in the success rate. 
This was likely because the location of the bifurcation 
point changed slightly in both cases (Figure 6(A)). 

As the parameter 𝜑𝜑 grows, the trajectory of the stable 
limit cycle extends further in the negative v-axis direction, 
thereby increasing the time required for the trajectory to 
complete a cycle and start a second spike. Given that 
substantial inputs typically occur instantaneously, these 
neurons are less likely to produce a second spike. 
Because a second spike could potentially pair with spike 
signals unrelated to the target pattern, neurons exhibiting 
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a larger 𝜑𝜑  are likely to avoid this scenario, thereby 
achieving the highly reliable target pattern detection. 
When 𝜑𝜑 increased from 1 to 1.25, the improvement in 
success rate was small compared to that when it increased 
from 0.35 to 0.5 and from 0.5 to 1. This is likely because 
the shape of the trajectory is generally the same when 𝜑𝜑 
is 1 and when 𝜑𝜑  is 1.5, and therefore, there is no 
significant increase in the time taken to reach the second 
spike (Figure 6(B)). 

The results suggest that the following two factors 
facilitated the success rate. First, the ability to fire 
quickly in response to a pattern; and second, a longer 
inter-spike interval during repetitive firing in response to 
a prolonged stimulus. We plan to test this hypothesis in 
future studies. For example, we will investigate whether 
artificially controlling the timing of spiking, apart from 
the structure of the fast subsystem, improves the success 
rate. In addition, we will explore the effects of slower 
dynamics, including bursting and spike-frequency 
adaptation, on the success rate. Furthermore, we plan to 
investigate the effect on success rate when each output 
neuron exhibits different dynamics. 
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