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A B S TR AC T   
A field-programmable gate array (FPGA) device with a Zynq architecture integrates a processing 
system (PS) and programmable logic (PL) into a single chip. Although the PL performance is 
typically considered, the PS load cannot be completely ignored. In this study, using an FPGA 
board with a Zynq architecture, the conditions under which an object detection system performs 
the best, while considering the PS and PL load balance, are explored. 
 
© 2022 The Author. Published by Sugisaka Masanori at ALife Robotics Corporation Ltd. 
This is an open access article distributed under the CC BY-NC 4.0 license 
(http://creativecommons.org/licenses/by-nc/4.0/). 

 

1. Introduction 

 In robotics, the demand for running neural networks 

such as object detection, on a low energy consumption 

device is extremely high. Consequently, the relationship 

between neural networks and energy consumption is 

being studied extensively [1], [2]. Field programmable 

gate arrays (FPGAs) meet these requirements as they are 

well known for their low energy consumption [3], [4] 

Owing to recent advancement in FPGAs, architectures 

such as Zynq, which featured the integration of the 

software programmability of a processing system (PS) 

and the hardware programmability of programmable 

logic (PL) into a single device have become popular. 

 When FPGA devices are employed, focus is typically 

placed on the PL performance regarding system 

performance [5], [6], however, the PS performance 

cannot be ignored completely. Although numerous 

studies on PS and PL communication have been 

conducted [7], [8], [9]. PS load was hardly considered. 

Currently, numerous studies highly focus on PL and 

neural networks [10], [11], [12]. The larger a neural 

network in a system becomes, the larger both its PS and 

PL load tend to be. Therefore, in this study, the impact of 

the PS load on system performance, including PS and PL 

communication, is investigated by measuring the 

execution time. Considering both the PS and PL 

performances concurrently based on the results, this 

study aims to improve the overall system performances 

to ensure that the system is more optimized than those 

focusing only on either PS or PL performance 

optimization. This is an extended paper submitted to the 

2023 International Conference on Artificial Life and 

Robotics [13].  
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2.  Method 

 The object detection system used in this study to 

investigate the influence of PS load on PL and system 

performances is shown in Fig. 1. Herein, the object 

detection in PL is implemented based on [14] and [15], 

and performs both convolution and max pooling 

operations which are widely used in neural networks. 

 The details of the layers in the neural network are based 

on Tiny YOLOv2 [16] and are listed in Table 1. From left 

to right of the columns in the table, Layer represents the 

type of layer, Input width and height represent the height 

and width of input feature maps to the layer, respectively. 

Input channel represents the number of input feature 

maps to the layer, and Conv. and Max pool. in the Layer 

column represent the convolution and max pooling layer, 

respectively. From the top to the bottom of the rows in 

the Layer column, input data to the PL in the system are 

passed and processed sequentially. 

Table 1.  Layers for object detection in PL 

No. Layer  

 Input 

width 

 Input 

height 

Input 

channel 

1 Conv. 384 288 3 

2 Max pool. 384 288 16 

3 Conv. 192 144 16 

4 Max pool. 192 144 32 

5 Conv. 96 72 32 

6 Max pool. 96 72 64 

7 Conv. 48 36 64 

8 Max pool. 48 36 128 

9 Conv. 24 18 128 

10 Max pool. 24 18 256 

11 Conv. 12 9 256 

12 Max pool. 12 9 512 

13 Conv. 12 9 512 

14 Conv. 12 9 1,024 

15 Conv. 12 9 512 

  

Following our previous work [17], we implement the 

neural network for object detection in PL in C++ to 

achieve optimal performance. Channel dimensional 

bitwise operations and UNROLL pragmas are adopted, 

along with PIPELINE pragmas for further improvement 

[18]. Consequently, approximately 3,049,770 minimum 

clock cycles and 5,153,242 maximum clock cycles are 

estimated. Table 2 presents the total resource usage of the 

PL, where in the Resource row, BRAM denotes block 

random-access memory, DSP denotes digital signal 

processing, FF denotes flip-flop, and LUT denotes a 

lookup table, respectively. 

Table 2.  Resource usage in PL 

Resource BRAM DSP FF LUT 

Usage 1,574 1 151,079 163,491 
Available 1,824 2,520 548,160 274,080 

 

 The system is run on an FPGA board with a Zynq 

architecture, to which a USB camera and monitor are 

directly connected. An image file and USB camera image 

are used as the input data for the proposed system. The 

PS load in the system is varied by switching between the 

two input methods. After receiving the input data, the 

system detects the objects and passes an output image on 

which bounding boxes are drawn to the monitor. The 

execution time of both object detection in PL and 

inference in the application are measured to evaluate the 

performance of the proposed system. Inference time 

represents the period from obtaining the input image data 

to displaying the output image data. 

 An experiment containing six configurations is 

conducted, and the execution time is collected and 

compared to evaluate the impact of the PS load on the 

object detection system performance. 

3.  Experiment 

 A Zynq UltraScale+ MPSoC ZCU102 evaluation board, 

Logicool C270 HD WEBCAM and BenQ GW2480T are 

employed as the experimental environment, and an 

 

 

Fig. 1 Proposed object detection system on an FPGA 

board 
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experiment executing the following applications is 

conducted. 

(i) FPGA application using a sub-thread for output 

images. 

(ii) C++ and FPGA applications. 

(iii) FPGA application using only the main thread. 

(iv) FPGA application using a sub-thread for input 

images. 

(v) FPGA application using three threads. 

(vi) FPGA application using over four threads. 

 The FPGA applications in all cases are generated using 

the AMD Xilinx tool, and completely the same object 

detection in PL and other operations in PS are performed, 

as shown in Fig. 1. Although operations in the PL are 

uniform across all applications, operations in the PS vary 

in each application. In addition to switching between the 

two input methods, the number of threads in the PS is 

increased to change the PS load as required. For 

execution time, both CPU time and wall time are 

measured using the C library clock() and C library 

clock_gettime() functions, respectively. CPU time refers 

to the time when the CPU is busy processing the 

program's instructions, whereas wall time refers to the 

time elapsed during the measurement. The OpenCV 

imshow() function is used to display output images from 

the PS in the system. 

Fig. 2 represents an overview of the processing of the 

FPGA application executed in the case one. The two 

input methods are switched each other by changing the 

arguments passed to the application. The 

pthread_create() function in the POSIX thread libraries is 

called to display an output image in a sub-thread, and all 

sub-threads are created using the pthread_create() 

function. 

Fig. 3 represents an overview of the case two. The C++ 

application generated by Cmake is executed to 

automatically execute the FPGA application in it. Shared 

memory is used to pass data between the C++ and FPGA 

applications. Note that regardless of the input method, the 

input data to the FPGA application are passed through the 

shared memory, therefore, only the image file is 

employed to measure the execution time. In the case two, 

the execution time of the FPGA application, which is the 

time from the beginning of the FPGA application to 

immediately before the end of the FPGA application, is 

also measured. 

Fig.4 shows an overview of the case three, which is 

almost similar to that of the case one. However, it differs 

from the case one application in that the function for 

displaying an output image is called in the main thread 

rather than in a sub-thread. 

 Fig. 5 shows an overview of the case four. Obtaining 

input images from the USB camera is executed in a sub-

thread. In the case four and other cases using a sub-thread 

to obtain the input data, the input data are not obtained 

from the image file because the data acquisition from the 

 
Fig. 2  Overview of the case one application 

 
Fig. 3  Overview of the case two application 

Fig. 4  Overview of the case three application 
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file is excessively light to properly evaluate the system 

performances. 

 Fig. 6 shows an overview of the case five. A sub-thread 

is created for obtaining input images, as in the case four 

application, and an additional sub-thread is created for 

displaying the corresponding output images, as in the 

case one application. These two sub-threads are not the 

same thread but the different ones. 

 The case one, three, four, and five aim to determine 

whether processing the input or output images in a sub-

thread is better for system performances. 

 Fig. 7 represents an overview of the application in the 

case six. The application is basically the same as that in 

the case five. Infinitely idle sub-threads are created in 

addition to the threads in the case five. A state of 

infinitely idle refers to when a C while loop infinitely 

keeps running with nothing to do. The case six aims to 

elucidate the effect of the number of threads on the 

system performances. Although the total number of 

threads could be easily varied, a minimum of 10, 100, 

1,000, and 10,000 are chosen to investigate the PS load 

of threads to ease in comparing the execution time. The 

proposed system can have a maximum of 25,961 threads. 

 Each application in the six cases is executed ten times, 

and the execution time is recorded. When the USB 

camera is used to obtain input data, the time when any 

object is detected is regarded as the execution time. A 

specific image file is prepared such that fixed objects are 

constantly detected by the system, to acquire input data 

from it when required. 

4.  Results 

 Table 3 to Table 14 represent the experimental results, 

where Min. denotes the minimum execution time and 

Max. denotes the maximum time, and Ave. denotes the 

meantime of ten measurements. The time is shown in 

seconds. Fig. 8 and Fig. 10 respectively represent figures 

of average inference CPU and wall times. Fig. 9 and Fig. 

11 respectively represent figures of average PL CPU and 

wall times. 
  

Fig. 6  Overview of the case four application 

Fig. 7  Overview of the case five application 

Fig. 5  Overview of the case six application 
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Table 3.  CPU time in the case one 

Image input Camera File 

CPU time 

(s) 

Inference 

Min. 1.344 

5.978 

x 10-1 

Ave. 1.348 

5.988 

x 10-1 

Max

. 1.350 

5.997 

x 10-1 

 

PL 

Min. 

1.042 

x 10-1 

1.016 

x 10-1 

Ave. 

1.046 

x 10-1 

1.028 

x 10-1 

Max

. 

1.080 

x 10-1 

1.048 

x 10-1 

 

Table 4.  Wall time in the case one  
 

Image input Camera File 

Wall time 

(s) 

Inference 

Min. 1.215 

5.136 

x 10-1 

Ave. 1.219 

5.145 

x 10-1 

Max. 1.221 

5.161 

x 10-1 

 

PL 

Min. 

5.231 

x 10-2 

5.271 

x 10-2 

Ave. 

5.232 

x 10-2 

5.273 

x 10-2 

Max. 

5.233 

x 10-2 

5.281 

x 10-2 

 
Table 3 lists the CPU times required for the case one, and 

Table 4 lists the wall times in the case one. Evidently 

from Table 3 and Table 4, the PS load of the USB camera 

was higher than that of the image file because of the 

inference time difference, and the execution time in PL 

was almost similar in both input methods. The case one 

in the Fig. 8 and Fig. 10 shows the inference time 

difference between the USB camera and image file, while 

the case one in the Fig. 9 and Fig. 11 shows the similarity 

of the execution time in PL. These results indicate no 

impact of the PS load on the PL execution. 

Table 5.  CPU time in the case two 

Image input File 

CPU time 

(s) 

 

Inference 

Min. 5.797 

Ave. 5.808 

Max. 5.817 

FPGA 

application 

Min. 4.071 

Ave. 4.073 

Max. 4.074 

 

PL 

Min. 

5.285 

x 10-2 

Ave. 

5.294 

x 10-2 

Max. 

5.301 

x 10-2 

Table 5 lists the CPU times required for the case two, 

here, the wall time is not presented because both the CPU 

and wall time were almost similar. As shown in Table 5, 

the CPU times in the PL were shorter than those in the 

case one application, although the inference CPU times 

were longer, and the wall times in the PL were almost 

similar. A comparison between the case one and two in 

Fig. 9 shows the shorter CPU times of the case two in the 

PL. A comparison between the case one and two in Fig. 

11 shows the similarity of the wall times in the PL.  

Table 6.  CPU time in the case three 

Image input Camera File 

CPU 

time 

(s) 

Inference 

Min. 

1.258 

x 10-1 

5.067 

x 10-1 

Ave. 

1.279 

x 10-1 

5.076 

x 10-1 

Max. 

1.285 

x 10-1 

5.082 

x 10-1 

 

PL 

Min. 

5.218 

x 10-2 

5.262 

x 10-2 

Ave. 

5.227 

x 10-2 

5.272 

x 10-2 

Max. 

5.231 

x 10-2 

5.281 

x 10-2 

Table 7.  Wall time in the case three 

Image input Camera File 

Wall 

time 

(s) 

 

Inference 

Min. 1.209 

5.129 

x 10-1 

Ave. 1.213 

5.142 

x 10-1 

Max. 1.236 

5.153 

x 10-1 

 

PL 

Min. 

5.231 

x 10-2 

5.272 

x 10-2 

Ave. 

5.232 

x 10-2 

5.275 

x 10-2 

Max. 

5.232 

x 10-2 

5.282 

x 10-2 

 

Table 6 lists the CPU times required for the case three, 

and Table 7 lists the wall times in the case three. 

Evidently, both the CPU and wall times of the image file 

input were almost similar. Both the inference and PL 

CPU times in the case three were shorter than those of the 

case one, and the wall times were identical to those of the 

case one application. Comparisons between the case one 

and three in Fig. 8 and Fig. 9 show the shorter CPU times 

of the case three. Comparisons between the case one and 

three in Fig. 10 and Fig. 11 show the similarity of the wall 

times. Based on these results, an output image should be 
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displayed in the main thread to reduce CPU time when 

the main thread is used to obtain the input data. 

Table 8.  CPU time in the case four 

Image input Camera 

CPU time 

(s) 

 

Inference 

Min. 

2.398 

x 10-1 

Ave. 

2.458 

x 10-1 

Max. 

2.519 

x 10-1 

 

PL 

Min. 

1.041 

x 10-1 

Ave. 

1.043 

x 10-1 

Max. 

1.044 

x 10-1 

Table 9.  Wall time in the case four 

Image input Camera 

Wall time 

(s) 

 

Inference 

Min. 

1.206 

x 10-1 

Ave. 

1.242 

x 10-1 

Max. 

1.385 

x 10-1 

 

PL 

Min. 

5.231 

x 10-2 

Ave. 

5.237 

x 10-2 

Max. 

5.242 

x 10-2 

 

 Table 8 lists the CPU times required for the case four, 

and Table 9 lists the wall times in the case four. Evidently 

from  Table 6 and Table 8, although the CPU times in the 

case four were longer than those in the case three, the 

inference wall times were shorter. Comparisons between 

the case three and four in Fig. 8 and Fig. 9 show the 

longer CPU times of the case four. A comparison 

between the case three and four in Fig. 10 shows the 

shorter wall time of the case four for inference. Evidently 

from Table 7 and Table 9, the wall times in the PL were 

almost similar. A comparison between the case three and 

four in Fig. 11 shows the similarity of the wall times in 

the PL. Based on these results, the input images from the 

USB camera should be acquired in a sub-thread to save 

inference wall time. 

 When we pay attention to the PL time, we realize the 

following points. 

(i) The PL CPU times in both the case one and four 

are almost similar, evidently from  Table 3 and 

Table 8. A comparison between the case one 

and four in Fig. 9 shows the similarity of the 

CPU times in the PL. 

(ii) The PL CPU times in both the case two and 

three are almost similar, evidently from Table 5 

and Table 6. A comparison between the case 

two and three in Fig. 9 shows the similarity of 

the CPU times in the PL. 

(iii) The PL CPU times in both the case one and four 

are longer than those in both the case two and 

three. A comparison among the case one, two, 

three, and four in Fig. 9 shows the longer CPU 

times of the case one and four in the PL. 

(iv) The number of threads in both the case one and 

four is more than that in both the case two and 

three. 

These four points suggest that the number of threads 

affected the PL CPU time. 

 Table 10 and Table 12 respectively list the CPU times 

required for the case five and six, and Table 11 and Table 

13 respectively list the wall times in the case five and six. 

Table 12 and Table 13 list the execution time 

corresponding to the total number of threads in each 

column. Regarding the execution time when the number 

of threads is 1,000, no objects are detected because the 

PS load could be confirmed without detecting any object 

in the system. Furthermore, the execution time for 10,000 

threads could not be acquired owing to module errors. 

Additionally, the execution time of eight and nine threads 

were measured to determine the conditions under which 

the PL CPU time starts affecting the PL wall time.  

 Evidently from Table 8 and Table 10, the CPU times for 

both inference and PL in the case five were longer than 

those in the case four. Comparisons between the case four 

and five in Fig. 8 and Fig. 9 show the longer CPU times 

of the case five. Evidently from Table 9 and Table 11, the 

PL wall times in both the case four and five were almost 

similar, whereas the inference wall times in the case five 

were slightly shorter than those in the case four. A 

comparison between the case four and five in Fig. 11 

shows the similarity of the wall times in the PL, whereas 

a comparison between the case four and five in Fig. 10 

shows the slightly shorter wall time of the case five for 

inference. These results, together with the results from 

the case one to five, suggest that if focus is placed on the 

wall time, the object detection system performs best 

when it deals with both input and output data in sub-
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threads. Fig. 10 also shows the case five brings the 

shortest wall time in all cases for inference. 

Table 10.  CPU time in the case five 

Image input Camera 

CPU time 

(s) 

 

Inference 

Min. 

3.524 

x 10-1 

Ave. 

3.569 

x 10-1 

Max. 

3.608 

x 10-1 

 

PL 

Min. 

1.543 

x 10-1 

Ave. 

1.569 

x 10-1 

Max. 

1.638 

x 10-1 

Table 11.  Wall time in the case five 

Image input  Camera 

Wall time 

(s) 

 

Inference 

Min. 

1.176 

x 10-1 

Ave. 

1.184 

x 10-1 

Max. 

1.192 

x 10-1 

 

PL 

Min. 

5.233 

x 10-2 

Ave. 

5.235 

x 10-2 

Max. 

5.239 

x 10-2 

 

 

 

 

 

 

 

 

 

 

 

 

                      Fig. 8. Average inference CPU time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                         Fig. 9. Average PL CPU time 

 

 

 

 

 

 

 

 

 

 

 

 

                         Fig. 10 Average inference wall time 

 

 

 

 

 

 

 

 

 

 

 

 

 

                          Fig.11 Average PL wall timre 

 

 

 

 

 



 

112 
 

Table 12.  CPU time in the case six 

Image 

input Camera 

The 

number of 

threads 8 9 10 100 1,000 

C
P

U
 t

im
e 

(s
) 

In
fe

re
n

ce
 

M
in

. 

6.072 

x 10-1 

5.910 

x 10-1 

7.074 

x 10-1 6.493 

6.490 

x 101 

A
v

e.
 

7.171 

x 10-1 

7.992 

x 10-1 

8.479 

x 10-1 6.975 

6.828 

x 101 

M
ax

. 

7.774 

x 10-1 

9.479 

x 10-1 

9.779 

x 10-1 7.469 

7.189 

x 101 

P
L

 

M
in

. 

1.762 

x 10-1 

1.842 

x 10-1 

1.838 

x 10-1 

4.057 

x 10-1 3.992 

A
v

e.
 

1.913 

x 10-1 

1.962 

x 10-1 

2.107 

x 10-1 

4.201 

x 10-1 4.026 

M
ax

. 

2.220 

x 10-1 

2.171 

x 10-1 

2.381 

x 10-1 

4.417 

x 10-1 4.072 

Table 13.  Wall time in the case six 

Image 

input Camera 

The 

number of 

threads 8 9 10 100 1,000 

W
al

l 
ti

m
e 

(s
) 

In
fe

re
n

ce
 M

in
. 

1.734 

x 10-1 

1.841 

x 10-1 

1.957 

x 10-1 1.642 

1.625 

x 101 

A
v

e.
 

2.040 

x 10-1 

2.233 

x 10-1 

2.315 

x 10-1 1.763 

1.710 

x 101 

 

 

M
ax

. 

2.193 

x 10-1 

2.659 

x 10-1 

2.618 

x 10-1 1.886 

1.800 

x 101 

P
L
 

M
in

. 

5.231 

x 10-2 

5.231 

x 10-2 

5.232 

x 10-2 

1.017 

x 10-

1 

9.982 

x 10-1 

A
v

e.
 

5.428 

x 10-2 

5.470 

x 10-2 

5.818 

x 10-2 

1.050 

x 10-

1 1.006 

M
ax

. 

6.335 

x10-2 

6.186 

x10-2 

6.648 

x10-2 

1.098 

x10-1 1.018 

 

 Table 14 presents the relationship between the number 

of threads in the PS and the execution time in the PL. The 

time in Table 14 represents the meantime in the PL for 

the USB camera input. Evidently, the longer the PL CPU 

time, the longer the PL wall time. Moreover, if the PL 

CPU time became over approximately 0.19 seconds, the 

PL wall time also started increasing. If the PL CPU time 

was below approximately 0.19 seconds, the PL wall time 

was kept at almost the constant execution time.  

Table 14.  Relationship between the number of 

threads and the execution time in PL  

Case 

The 

number 

of 

threads 

Mean 

CPU time 

in PL 

(s) 

Mean 

wall time 

in PL 

(s) 

Three 1 

5.227 

x 10-2 

5.232 

x 10-2 

Four 2 

1.043 

x 10-1 

5.237 

x 10-2 

Five 3 

1.569 

x 10-1 

5.235 

x 10-2 

Six 

8 

1.913 

x 10-1 

5.428 

x 10-2 

9 

1.962 

x 10-1 

5.470 

x 10-2 

10 

2.107 

x 10-1 

5.818 

x 10-2 

100 

4.201 

x 10-1 

1.050 

x 10-1 

1,000 4.026 1.006 
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5. Discussion 

 The PS load does not affect the PL execution, 

particularly in terms of the wall time, unless the PS load 

exceeds the specific CPU time in the PL. Although 

switching methods to obtain data from the USB camera 

to the file and vice versa does not affect the CPU time in 

the PL, the number of threads in the PS directly impacts 

the CPU time in the PL. Even if the CPU time in the PL 

increases as the number of threads in the PS increases, 

the wall time in the PL does not change until the CPU 

time in the PL reaches a specific value. After the CPU 

time in the PL exceeds the specific time, the wall time in 

the PL also increases as the number of threads increases. 

 For the proposed system, when the total number of 

threads in an application approached approximately eight, 

the CPU time in PL became approximately 0.19 seconds 

and the wall time in PL also began increasing. Further, 

the proposed system performed best when input data 

were acquired in a sub-thread, and output images were 

displayed in a sub-thread. 

6. Conclusion 

 The system performance of the proposed system can be 

improved by considering both the PS and PL 

independently because the PS load, except for factors to 

increase the CPU time in the PL such as the number of 

threads, does not affect the wall time in the PL. When 

dealing with multi-threading, because the PS load is 

likely to degrade the PL performance, we need to be 

careful particularly of the PS load to prevent the system 

performance deterioration.  

 In the near future, we will integrate our neural networks 

and artificial intelligence circuits into a PL [19], [20], 

[21], [22], [23], [24], [25], [26], [27], [28], [29] and then 

connect it to a home service robot via a PS by utilizing 

the knowledge of this study [30], [31], [32], [33] to 

realize a high-performance and low-power intelligent 

robot system. 
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