
Corresponding author’s E-mail: watanabe.yusuke898@mail.kyutech.jp, tamukoh@brain.kyutech.jp URL: http://www.lsse.kyutech.ac.jp/english/

105

Research Article

Optimizing a Field-Programmable Gate Array Object Detection
System Considering Processing System and Programmable
Logic Load Balance

Yusuke Watanabe1, Hakaru Tamukoh2
1CRAFT WORK Co., Ltd, 5F OS Bldg., 3-5-15 Shibasaki-cho, Tachikawa, Tokyo, 190-0023, Japan, Graduate School of Life Science and Systems Engineering,

Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0196, Japan
2Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0196, Japan

A R T I C L E IN F O

Article History

Received 28 November 2022

Accepted 13 November 2023

Keywords

FPGA

Zynq

PL

PS

Multi-threading

System Performance

A B S TR AC T
A field-programmable gate array (FPGA) device with a Zynq architecture integrates a processing
system (PS) and programmable logic (PL) into a single chip. Although the PL performance is
typically considered, the PS load cannot be completely ignored. In this study, using an FPGA
board with a Zynq architecture, the conditions under which an object detection system performs
the best, while considering the PS and PL load balance, are explored.

© 2022 The Author. Published by Sugisaka Masanori at ALife Robotics Corporation Ltd.
This is an open access article distributed under the CC BY-NC 4.0 license
(http://creativecommons.org/licenses/by-nc/4.0/).

1. Introduction

 In robotics, the demand for running neural networks

such as object detection, on a low energy consumption

device is extremely high. Consequently, the relationship

between neural networks and energy consumption is

being studied extensively [1], [2]. Field programmable

gate arrays (FPGAs) meet these requirements as they are

well known for their low energy consumption [3], [4]

Owing to recent advancement in FPGAs, architectures

such as Zynq, which featured the integration of the

software programmability of a processing system (PS)

and the hardware programmability of programmable

logic (PL) into a single device have become popular.

 When FPGA devices are employed, focus is typically

placed on the PL performance regarding system

performance [5], [6], however, the PS performance

cannot be ignored completely. Although numerous

studies on PS and PL communication have been

conducted [7], [8], [9]. PS load was hardly considered.

Currently, numerous studies highly focus on PL and

neural networks [10], [11], [12]. The larger a neural

network in a system becomes, the larger both its PS and

PL load tend to be. Therefore, in this study, the impact of

the PS load on system performance, including PS and PL

communication, is investigated by measuring the

execution time. Considering both the PS and PL

performances concurrently based on the results, this

study aims to improve the overall system performances

to ensure that the system is more optimized than those

focusing only on either PS or PL performance

optimization. This is an extended paper submitted to the

2023 International Conference on Artificial Life and

Robotics [13].

SUGISAKA
MASANORI

Journal of Robotics, Networking and Artificial Life

Vol. 10(2); September (2023), pp. 105–114

ISSN (Online): 2352-6386; ISSN (Print): 2405-9021

https://alife-robotics.org/jrnal.html

http://creativecommons.org/licenses/by-nc/4.0/
https://grp.isbn-international.org/search/piid_solr?keys=sugisaka
https://grp.isbn-international.org/search/piid_solr?keys=sugisaka

106

2. Method

 The object detection system used in this study to

investigate the influence of PS load on PL and system

performances is shown in Fig. 1. Herein, the object

detection in PL is implemented based on [14] and [15],

and performs both convolution and max pooling

operations which are widely used in neural networks.

 The details of the layers in the neural network are based

on Tiny YOLOv2 [16] and are listed in Table 1. From left

to right of the columns in the table, Layer represents the

type of layer, Input width and height represent the height

and width of input feature maps to the layer, respectively.

Input channel represents the number of input feature

maps to the layer, and Conv. and Max pool. in the Layer

column represent the convolution and max pooling layer,

respectively. From the top to the bottom of the rows in

the Layer column, input data to the PL in the system are

passed and processed sequentially.

Table 1. Layers for object detection in PL

No. Layer

 Input

width

 Input

height

Input

channel

1 Conv. 384 288 3

2 Max pool. 384 288 16

3 Conv. 192 144 16

4 Max pool. 192 144 32

5 Conv. 96 72 32

6 Max pool. 96 72 64

7 Conv. 48 36 64

8 Max pool. 48 36 128

9 Conv. 24 18 128

10 Max pool. 24 18 256

11 Conv. 12 9 256

12 Max pool. 12 9 512

13 Conv. 12 9 512

14 Conv. 12 9 1,024

15 Conv. 12 9 512

Following our previous work [17], we implement the

neural network for object detection in PL in C++ to

achieve optimal performance. Channel dimensional

bitwise operations and UNROLL pragmas are adopted,

along with PIPELINE pragmas for further improvement

[18]. Consequently, approximately 3,049,770 minimum

clock cycles and 5,153,242 maximum clock cycles are

estimated. Table 2 presents the total resource usage of the

PL, where in the Resource row, BRAM denotes block

random-access memory, DSP denotes digital signal

processing, FF denotes flip-flop, and LUT denotes a

lookup table, respectively.

Table 2. Resource usage in PL

Resource BRAM DSP FF LUT

Usage 1,574 1 151,079 163,491
Available 1,824 2,520 548,160 274,080

 The system is run on an FPGA board with a Zynq

architecture, to which a USB camera and monitor are

directly connected. An image file and USB camera image

are used as the input data for the proposed system. The

PS load in the system is varied by switching between the

two input methods. After receiving the input data, the

system detects the objects and passes an output image on

which bounding boxes are drawn to the monitor. The

execution time of both object detection in PL and

inference in the application are measured to evaluate the

performance of the proposed system. Inference time

represents the period from obtaining the input image data

to displaying the output image data.

 An experiment containing six configurations is

conducted, and the execution time is collected and

compared to evaluate the impact of the PS load on the

object detection system performance.

3. Experiment

 A Zynq UltraScale+ MPSoC ZCU102 evaluation board,

Logicool C270 HD WEBCAM and BenQ GW2480T are

employed as the experimental environment, and an

Fig. 1 Proposed object detection system on an FPGA

board

107

experiment executing the following applications is

conducted.

(i) FPGA application using a sub-thread for output

images.

(ii) C++ and FPGA applications.

(iii) FPGA application using only the main thread.

(iv) FPGA application using a sub-thread for input

images.

(v) FPGA application using three threads.

(vi) FPGA application using over four threads.

 The FPGA applications in all cases are generated using

the AMD Xilinx tool, and completely the same object

detection in PL and other operations in PS are performed,

as shown in Fig. 1. Although operations in the PL are

uniform across all applications, operations in the PS vary

in each application. In addition to switching between the

two input methods, the number of threads in the PS is

increased to change the PS load as required. For

execution time, both CPU time and wall time are

measured using the C library clock() and C library

clock_gettime() functions, respectively. CPU time refers

to the time when the CPU is busy processing the

program's instructions, whereas wall time refers to the

time elapsed during the measurement. The OpenCV

imshow() function is used to display output images from

the PS in the system.

Fig. 2 represents an overview of the processing of the

FPGA application executed in the case one. The two

input methods are switched each other by changing the

arguments passed to the application. The

pthread_create() function in the POSIX thread libraries is

called to display an output image in a sub-thread, and all

sub-threads are created using the pthread_create()

function.

Fig. 3 represents an overview of the case two. The C++

application generated by Cmake is executed to

automatically execute the FPGA application in it. Shared

memory is used to pass data between the C++ and FPGA

applications. Note that regardless of the input method, the

input data to the FPGA application are passed through the

shared memory, therefore, only the image file is

employed to measure the execution time. In the case two,

the execution time of the FPGA application, which is the

time from the beginning of the FPGA application to

immediately before the end of the FPGA application, is

also measured.

Fig.4 shows an overview of the case three, which is

almost similar to that of the case one. However, it differs

from the case one application in that the function for

displaying an output image is called in the main thread

rather than in a sub-thread.

 Fig. 5 shows an overview of the case four. Obtaining

input images from the USB camera is executed in a sub-

thread. In the case four and other cases using a sub-thread

to obtain the input data, the input data are not obtained

from the image file because the data acquisition from the

Fig. 2 Overview of the case one application

Fig. 3 Overview of the case two application

Fig. 4 Overview of the case three application

108

file is excessively light to properly evaluate the system

performances.

 Fig. 6 shows an overview of the case five. A sub-thread

is created for obtaining input images, as in the case four

application, and an additional sub-thread is created for

displaying the corresponding output images, as in the

case one application. These two sub-threads are not the

same thread but the different ones.

 The case one, three, four, and five aim to determine

whether processing the input or output images in a sub-

thread is better for system performances.

 Fig. 7 represents an overview of the application in the

case six. The application is basically the same as that in

the case five. Infinitely idle sub-threads are created in

addition to the threads in the case five. A state of

infinitely idle refers to when a C while loop infinitely

keeps running with nothing to do. The case six aims to

elucidate the effect of the number of threads on the

system performances. Although the total number of

threads could be easily varied, a minimum of 10, 100,

1,000, and 10,000 are chosen to investigate the PS load

of threads to ease in comparing the execution time. The

proposed system can have a maximum of 25,961 threads.

 Each application in the six cases is executed ten times,

and the execution time is recorded. When the USB

camera is used to obtain input data, the time when any

object is detected is regarded as the execution time. A

specific image file is prepared such that fixed objects are

constantly detected by the system, to acquire input data

from it when required.

4. Results

 Table 3 to Table 14 represent the experimental results,

where Min. denotes the minimum execution time and

Max. denotes the maximum time, and Ave. denotes the

meantime of ten measurements. The time is shown in

seconds. Fig. 8 and Fig. 10 respectively represent figures

of average inference CPU and wall times. Fig. 9 and Fig.

11 respectively represent figures of average PL CPU and

wall times.

Fig. 6 Overview of the case four application

Fig. 7 Overview of the case five application

Fig. 5 Overview of the case six application

109

Table 3. CPU time in the case one

Image input Camera File

CPU time

(s)

Inference

Min. 1.344

5.978

x 10-1

Ave. 1.348

5.988

x 10-1

Max

. 1.350

5.997

x 10-1

PL

Min.

1.042

x 10-1

1.016

x 10-1

Ave.

1.046

x 10-1

1.028

x 10-1

Max

.

1.080

x 10-1

1.048

x 10-1

Table 4. Wall time in the case one

Image input Camera File

Wall time

(s)

Inference

Min. 1.215

5.136

x 10-1

Ave. 1.219

5.145

x 10-1

Max. 1.221

5.161

x 10-1

PL

Min.

5.231

x 10-2

5.271

x 10-2

Ave.

5.232

x 10-2

5.273

x 10-2

Max.

5.233

x 10-2

5.281

x 10-2

Table 3 lists the CPU times required for the case one, and

Table 4 lists the wall times in the case one. Evidently

from Table 3 and Table 4, the PS load of the USB camera

was higher than that of the image file because of the

inference time difference, and the execution time in PL

was almost similar in both input methods. The case one

in the Fig. 8 and Fig. 10 shows the inference time

difference between the USB camera and image file, while

the case one in the Fig. 9 and Fig. 11 shows the similarity

of the execution time in PL. These results indicate no

impact of the PS load on the PL execution.

Table 5. CPU time in the case two

Image input File

CPU time

(s)

Inference

Min. 5.797

Ave. 5.808

Max. 5.817

FPGA

application

Min. 4.071

Ave. 4.073

Max. 4.074

PL

Min.

5.285

x 10-2

Ave.

5.294

x 10-2

Max.

5.301

x 10-2

Table 5 lists the CPU times required for the case two,

here, the wall time is not presented because both the CPU

and wall time were almost similar. As shown in Table 5,

the CPU times in the PL were shorter than those in the

case one application, although the inference CPU times

were longer, and the wall times in the PL were almost

similar. A comparison between the case one and two in

Fig. 9 shows the shorter CPU times of the case two in the

PL. A comparison between the case one and two in Fig.

11 shows the similarity of the wall times in the PL.

Table 6. CPU time in the case three

Image input Camera File

CPU

time

(s)

Inference

Min.

1.258

x 10-1

5.067

x 10-1

Ave.

1.279

x 10-1

5.076

x 10-1

Max.

1.285

x 10-1

5.082

x 10-1

PL

Min.

5.218

x 10-2

5.262

x 10-2

Ave.

5.227

x 10-2

5.272

x 10-2

Max.

5.231

x 10-2

5.281

x 10-2

Table 7. Wall time in the case three

Image input Camera File

Wall

time

(s)

Inference

Min. 1.209

5.129

x 10-1

Ave. 1.213

5.142

x 10-1

Max. 1.236

5.153

x 10-1

PL

Min.

5.231

x 10-2

5.272

x 10-2

Ave.

5.232

x 10-2

5.275

x 10-2

Max.

5.232

x 10-2

5.282

x 10-2

Table 6 lists the CPU times required for the case three,

and Table 7 lists the wall times in the case three.

Evidently, both the CPU and wall times of the image file

input were almost similar. Both the inference and PL

CPU times in the case three were shorter than those of the

case one, and the wall times were identical to those of the

case one application. Comparisons between the case one

and three in Fig. 8 and Fig. 9 show the shorter CPU times

of the case three. Comparisons between the case one and

three in Fig. 10 and Fig. 11 show the similarity of the wall

times. Based on these results, an output image should be

110

displayed in the main thread to reduce CPU time when

the main thread is used to obtain the input data.

Table 8. CPU time in the case four

Image input Camera

CPU time

(s)

Inference

Min.

2.398

x 10-1

Ave.

2.458

x 10-1

Max.

2.519

x 10-1

PL

Min.

1.041

x 10-1

Ave.

1.043

x 10-1

Max.

1.044

x 10-1

Table 9. Wall time in the case four

Image input Camera

Wall time

(s)

Inference

Min.

1.206

x 10-1

Ave.

1.242

x 10-1

Max.

1.385

x 10-1

PL

Min.

5.231

x 10-2

Ave.

5.237

x 10-2

Max.

5.242

x 10-2

 Table 8 lists the CPU times required for the case four,

and Table 9 lists the wall times in the case four. Evidently

from Table 6 and Table 8, although the CPU times in the

case four were longer than those in the case three, the

inference wall times were shorter. Comparisons between

the case three and four in Fig. 8 and Fig. 9 show the

longer CPU times of the case four. A comparison

between the case three and four in Fig. 10 shows the

shorter wall time of the case four for inference. Evidently

from Table 7 and Table 9, the wall times in the PL were

almost similar. A comparison between the case three and

four in Fig. 11 shows the similarity of the wall times in

the PL. Based on these results, the input images from the

USB camera should be acquired in a sub-thread to save

inference wall time.

 When we pay attention to the PL time, we realize the

following points.

(i) The PL CPU times in both the case one and four

are almost similar, evidently from Table 3 and

Table 8. A comparison between the case one

and four in Fig. 9 shows the similarity of the

CPU times in the PL.

(ii) The PL CPU times in both the case two and

three are almost similar, evidently from Table 5

and Table 6. A comparison between the case

two and three in Fig. 9 shows the similarity of

the CPU times in the PL.

(iii) The PL CPU times in both the case one and four

are longer than those in both the case two and

three. A comparison among the case one, two,

three, and four in Fig. 9 shows the longer CPU

times of the case one and four in the PL.

(iv) The number of threads in both the case one and

four is more than that in both the case two and

three.

These four points suggest that the number of threads

affected the PL CPU time.

 Table 10 and Table 12 respectively list the CPU times

required for the case five and six, and Table 11 and Table

13 respectively list the wall times in the case five and six.

Table 12 and Table 13 list the execution time

corresponding to the total number of threads in each

column. Regarding the execution time when the number

of threads is 1,000, no objects are detected because the

PS load could be confirmed without detecting any object

in the system. Furthermore, the execution time for 10,000

threads could not be acquired owing to module errors.

Additionally, the execution time of eight and nine threads

were measured to determine the conditions under which

the PL CPU time starts affecting the PL wall time.

 Evidently from Table 8 and Table 10, the CPU times for

both inference and PL in the case five were longer than

those in the case four. Comparisons between the case four

and five in Fig. 8 and Fig. 9 show the longer CPU times

of the case five. Evidently from Table 9 and Table 11, the

PL wall times in both the case four and five were almost

similar, whereas the inference wall times in the case five

were slightly shorter than those in the case four. A

comparison between the case four and five in Fig. 11

shows the similarity of the wall times in the PL, whereas

a comparison between the case four and five in Fig. 10

shows the slightly shorter wall time of the case five for

inference. These results, together with the results from

the case one to five, suggest that if focus is placed on the

wall time, the object detection system performs best

when it deals with both input and output data in sub-

111

0
0.3
0.6
0.9
1.2
1.5

One Three Four Five

T
im

e
(s

)

Case

Camera File

0
0.03
0.06
0.09
0.12
0.15
0.18

One Two Three Four Five

T
im

e
(s

)

Case
Camera File

0
0.2
0.4
0.6
0.8

1
1.2
1.4

One Three Four Five

T
im

e
(s

)

Case

Camera File

0
0.01
0.02
0.03
0.04
0.05
0.06

One Two Three Four Five

T
im

e
(s

)

Case

Camera File

threads. Fig. 10 also shows the case five brings the

shortest wall time in all cases for inference.

Table 10. CPU time in the case five

Image input Camera

CPU time

(s)

Inference

Min.

3.524

x 10-1

Ave.

3.569

x 10-1

Max.

3.608

x 10-1

PL

Min.

1.543

x 10-1

Ave.

1.569

x 10-1

Max.

1.638

x 10-1

Table 11. Wall time in the case five

Image input Camera

Wall time

(s)

Inference

Min.

1.176

x 10-1

Ave.

1.184

x 10-1

Max.

1.192

x 10-1

PL

Min.

5.233

x 10-2

Ave.

5.235

x 10-2

Max.

5.239

x 10-2

 Fig. 8. Average inference CPU time

 Fig. 9. Average PL CPU time

 Fig. 10 Average inference wall time

 Fig.11 Average PL wall timre

112

Table 12. CPU time in the case six

Image

input Camera

The

number of

threads 8 9 10 100 1,000

C
P

U
 t

im
e

(s
)

In
fe

re
n

ce

M
in

.

6.072

x 10-1

5.910

x 10-1

7.074

x 10-1 6.493

6.490

x 101

A
v

e.

7.171

x 10-1

7.992

x 10-1

8.479

x 10-1 6.975

6.828

x 101

M
ax

.

7.774

x 10-1

9.479

x 10-1

9.779

x 10-1 7.469

7.189

x 101

P
L

M
in

.

1.762

x 10-1

1.842

x 10-1

1.838

x 10-1

4.057

x 10-1 3.992

A
v

e.

1.913

x 10-1

1.962

x 10-1

2.107

x 10-1

4.201

x 10-1 4.026

M
ax

.

2.220

x 10-1

2.171

x 10-1

2.381

x 10-1

4.417

x 10-1 4.072

Table 13. Wall time in the case six

Image

input Camera

The

number of

threads 8 9 10 100 1,000

W
al

l
ti

m
e

(s
)

In
fe

re
n

ce
 M

in
.

1.734

x 10-1

1.841

x 10-1

1.957

x 10-1 1.642

1.625

x 101

A
v

e.

2.040

x 10-1

2.233

x 10-1

2.315

x 10-1 1.763

1.710

x 101

M
ax

.

2.193

x 10-1

2.659

x 10-1

2.618

x 10-1 1.886

1.800

x 101

P
L

M
in

.

5.231

x 10-2

5.231

x 10-2

5.232

x 10-2

1.017

x 10-

1

9.982

x 10-1

A
v

e.

5.428

x 10-2

5.470

x 10-2

5.818

x 10-2

1.050

x 10-

1 1.006

M
ax

.

6.335

x10-2

6.186

x10-2

6.648

x10-2

1.098

x10-1 1.018

 Table 14 presents the relationship between the number

of threads in the PS and the execution time in the PL. The

time in Table 14 represents the meantime in the PL for

the USB camera input. Evidently, the longer the PL CPU

time, the longer the PL wall time. Moreover, if the PL

CPU time became over approximately 0.19 seconds, the

PL wall time also started increasing. If the PL CPU time

was below approximately 0.19 seconds, the PL wall time

was kept at almost the constant execution time.

Table 14. Relationship between the number of

threads and the execution time in PL

Case

The

number

of

threads

Mean

CPU time

in PL

(s)

Mean

wall time

in PL

(s)

Three 1

5.227

x 10-2

5.232

x 10-2

Four 2

1.043

x 10-1

5.237

x 10-2

Five 3

1.569

x 10-1

5.235

x 10-2

Six

8

1.913

x 10-1

5.428

x 10-2

9

1.962

x 10-1

5.470

x 10-2

10

2.107

x 10-1

5.818

x 10-2

100

4.201

x 10-1

1.050

x 10-1

1,000 4.026 1.006

113

5. Discussion

 The PS load does not affect the PL execution,

particularly in terms of the wall time, unless the PS load

exceeds the specific CPU time in the PL. Although

switching methods to obtain data from the USB camera

to the file and vice versa does not affect the CPU time in

the PL, the number of threads in the PS directly impacts

the CPU time in the PL. Even if the CPU time in the PL

increases as the number of threads in the PS increases,

the wall time in the PL does not change until the CPU

time in the PL reaches a specific value. After the CPU

time in the PL exceeds the specific time, the wall time in

the PL also increases as the number of threads increases.

 For the proposed system, when the total number of

threads in an application approached approximately eight,

the CPU time in PL became approximately 0.19 seconds

and the wall time in PL also began increasing. Further,

the proposed system performed best when input data

were acquired in a sub-thread, and output images were

displayed in a sub-thread.

6. Conclusion

 The system performance of the proposed system can be

improved by considering both the PS and PL

independently because the PS load, except for factors to

increase the CPU time in the PL such as the number of

threads, does not affect the wall time in the PL. When

dealing with multi-threading, because the PS load is

likely to degrade the PL performance, we need to be

careful particularly of the PS load to prevent the system

performance deterioration.

 In the near future, we will integrate our neural networks

and artificial intelligence circuits into a PL [19], [20],

[21], [22], [23], [24], [25], [26], [27], [28], [29] and then

connect it to a home service robot via a PS by utilizing

the knowledge of this study [30], [31], [32], [33] to

realize a high-performance and low-power intelligent

robot system.

References

1. C. Profentzas, M. Almgren and O. Landsiedel,

“Performance of deep neural networks on low-power IoT

devices”, Proceedings of the Workshop on Benchmarking

Cyber-Physical Systems and Internet of Things, pp. 32-37,

2021.

2. L. Caballero, Á. Perafan, M. Rinaldy and W. Percybrooks,

“Predicting the Energy Consumption of a Robot in an

Exploration Task Using Optimized Neural Networks ” ,

Electronics, vol. 10, no. 8, pp. 920, 2021.

3. M. Qasaimeh, K. Denolf, J. Lo, K. Vissers, J. Zambreno

and P. H. Jones, “Comparing Energy Efficiency of CPU,

GPU and FPGA Implementations for Vision Kernels” ,

2019 IEEE International Conference on Embedded

Software and Systems (ICESS), pp. 1-8, 2019.

4. H. Nakahara and T. Sasao, “A High-speed Low-power

Deep Neural Network on an FPGA based on the Nested

RNS: Applied to an Object Detector ” , 2018 IEEE

International Symposium on Circuits and Systems

(ISCAS), pp. 1-5, 2018.

5. L. Mo, C. Wu, L. He and G. Chen, “Layout driven FPGA

packing algorithm for performance optimization”, IEICE

Electronics Express, vol. 14, no. 11, pp. 1-10, 2017.

6. T. Nguyen, C. MacLean, M. Siracusa, D. Doerfler, N. J.

Wright and S. Williams, “FPGA-based HPC accelerators:

An evaluation on performance and energy efficiency” ,

Concurrency and Computation: Practice and Experience,

vol. 34, no. 20, 2021.

7. S. Ramagond, S. Yellampalli and C. Kanagasabapathi, “A

review and analysis of communication logic between PL

and PS in ZYNQ AP SoC”, 2017 International Conference

on Smart Technologies for Smart Nation (SmartTechCon),

pp. 946-951, 2017.

8. A. Rios-Navarro, R. Tapiador-Morales, A. Jimenez-

Fernandez, C. Amaya, C. Amaya, T. Delbruck and A.

Linares-Barranco, “Performance evaluation over HW/SW

co-design SoC memory transfers for a CNN accelerator”,
2018 IEEE 18th International Conference on

Nanotechnology (IEEE-NANO), pp. 1-4, 2018.

9. C. Concatto, A. Attwood, J. A. Pascual, M. Ashworth, J.

Navaridas, M. Luján and J. Goodacre, “Enabling shared

memory communication in networks of MPSoCs ” ,

Concurrency and Computation: Practice and Experience,

vol. 31, no. 21, 2018.

10. C. Wang and Z. Luo, “A Review of the Optimal Design of

Neural Networks Based on FPGA”, Applied Sciences, vol.

12, no. 21, 2022.

11. S. S. Lingala, S. Bedekar, P. Tyagi, P. Saha and P. Shahane,

“FPGA Based Implementation of Neural Network”, 2022

International Conference on Advances in Computing,

Communication and Applied Informatics (ACCAI), pp. 1-

5, 2022.

12. J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T.

Tang, N. Xu, S. Song, Y. Wang and H. Yang, “Going

Deeper with Embedded FPGA Platform for Convolutional

Neural Network”, Proceedings of the 2016 ACM/SIGDA

International Symposium on Field-Programmable Gate

Arrays (FPGA '16), pp. 26-35, 2016.

13. Y. Watanabe and H. Tamukoh, “Impact of PS load on

FPGA object detection system performance”, Proceedings

of International Conference on Artificial Life and Robotics,

pp. 415-419, 2023.

14. M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv and Y.

Bengio, “ Binarized Neural Networks: Training Deep

Neural Networks with Weights and Activations

Constrained to +1 or -1”, 2016.

https://dl.acm.org/doi/10.1145/3458473.3458823
https://dl.acm.org/doi/10.1145/3458473.3458823
https://dl.acm.org/doi/10.1145/3458473.3458823
https://dl.acm.org/doi/10.1145/3458473.3458823
https://dl.acm.org/doi/10.1145/3458473.3458823
https://www.mdpi.com/2079-9292/10/8/920
https://www.mdpi.com/2079-9292/10/8/920
https://www.mdpi.com/2079-9292/10/8/920
https://www.mdpi.com/2079-9292/10/8/920
https://ieeexplore.ieee.org/document/8782524
https://ieeexplore.ieee.org/document/8782524
https://ieeexplore.ieee.org/document/8782524
https://ieeexplore.ieee.org/document/8782524
https://ieeexplore.ieee.org/document/8782524
https://ieeexplore.ieee.org/document/8351850
https://ieeexplore.ieee.org/document/8351850
https://ieeexplore.ieee.org/document/8351850
https://ieeexplore.ieee.org/document/8351850
https://ieeexplore.ieee.org/document/8351850
https://www.jstage.jst.go.jp/article/elex/14/11/14_14.20170419/_pdf
https://www.jstage.jst.go.jp/article/elex/14/11/14_14.20170419/_pdf
https://www.jstage.jst.go.jp/article/elex/14/11/14_14.20170419/_pdf
https://www.osti.gov/servlets/purl/1959989
https://www.osti.gov/servlets/purl/1959989
https://www.osti.gov/servlets/purl/1959989
https://www.osti.gov/servlets/purl/1959989
https://www.osti.gov/servlets/purl/1959989
https://www.osti.gov/servlets/purl/1959989
https://ieeexplore.ieee.org/document/8358511
https://ieeexplore.ieee.org/document/8358511
https://ieeexplore.ieee.org/document/8358511
https://ieeexplore.ieee.org/document/8358511
https://ieeexplore.ieee.org/document/8358511
https://ieeexplore.ieee.org/document/8626313
https://ieeexplore.ieee.org/document/8626313
https://ieeexplore.ieee.org/document/8626313
https://ieeexplore.ieee.org/document/8626313
https://ieeexplore.ieee.org/document/8626313
https://ieeexplore.ieee.org/document/8626313
https://research.manchester.ac.uk/en/publications/enabling-shared-memory-communication-in-networks-of-mpsocs
https://research.manchester.ac.uk/en/publications/enabling-shared-memory-communication-in-networks-of-mpsocs
https://research.manchester.ac.uk/en/publications/enabling-shared-memory-communication-in-networks-of-mpsocs
https://research.manchester.ac.uk/en/publications/enabling-shared-memory-communication-in-networks-of-mpsocs
https://research.manchester.ac.uk/en/publications/enabling-shared-memory-communication-in-networks-of-mpsocs
https://research.manchester.ac.uk/en/publications/enabling-shared-memory-communication-in-networks-of-mpsocs
https://www.mdpi.com/2076-3417/12/21/10771
https://www.mdpi.com/2076-3417/12/21/10771
https://www.mdpi.com/2076-3417/12/21/10771
https://ieeexplore.ieee.org/document/9752656
https://ieeexplore.ieee.org/document/9752656
https://ieeexplore.ieee.org/document/9752656
https://ieeexplore.ieee.org/document/9752656
https://ieeexplore.ieee.org/document/9752656
https://dl.acm.org/doi/10.1145/2847263.2847265
https://dl.acm.org/doi/10.1145/2847263.2847265
https://dl.acm.org/doi/10.1145/2847263.2847265
https://dl.acm.org/doi/10.1145/2847263.2847265
https://dl.acm.org/doi/10.1145/2847263.2847265
https://dl.acm.org/doi/10.1145/2847263.2847265
https://cir.nii.ac.jp/crid/1050014016717957632
https://cir.nii.ac.jp/crid/1050014016717957632
https://cir.nii.ac.jp/crid/1050014016717957632
https://cir.nii.ac.jp/crid/1050014016717957632
https://arxiv.org/abs/1602.02830
https://arxiv.org/abs/1602.02830
https://arxiv.org/abs/1602.02830
https://arxiv.org/abs/1602.02830

114

15. H. Nakahara, H. Yonekawa, H. Iwamoto and M.

Motomura, “ A Batch Normalization Free Binarized

Convolutional Deep Neural Network on an FPGA

(Abstract Only)”, Proceedings of the 2017 ACM/SIGDA

International Symposium on Field-Programmable Gate

Arrays (FPGA '17), pp. 290, 2017.

16. J. Redmon and A. Farhadi, “YOLO9000: Better, Faster,

Stronger”, 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pp. 6517-6525, 2017.

17. Y. Watanabe and H. Tamukoh, “ Influence of FPGA

Implementation Methods in High-Level Synthesis”, 2021

International Conference on Artificial Life and Robotics

(ICAROB 2021), vol. 26, pp. 10-11, 2021.

18. J. Licht, M. Besta, S. Meierhans and T. Hoefler.

“ Transformations of High-Level Synthesis Codes for

High-Performance Computing ” , IEEE Transactions on

Parallel and Distributed Systems, vol. 32, no. 5, pp. 1014-

1029, 2021.

19. S. Hori and H. Tamukoh, “An Implementation Method

Using Cut-Off Bits for Restricted Boltzmann Machines

Without Random Number Generators”, IEEE Access, vol.

10, pp. 42791-42801, 2022.

20. Y. Tanaka and H. Tamukoh, “ Reservoir-based

convolution ” , Nonlinear Theory and Its Applications,

IEICE, vol. 13, no. 2, pp. 397-402, 2022.

21. N. Fuengfusin and H. Tamukoh, “ INT8 Activation

Ternary or Binary Weights Networks” , Proceedings of

International Conference on Artificial Life and Robotics,

vol. 27, pp. 599-603, 2022.

22. N. Fuengfusin and H. Tamukoh, “ Mixed-precision

weights network for field-programmable gate array ” ,

PLoS ONE, vol. 16, no. 5, 2021.

23. N. Fuengfusin and H. Tamukoh, “ A Sub-Model

Detachable Convolutional Neural Network” , Journal of

Robotics, Networking and Artificial Life, vol. 8, no. 1, pp.

52-55, 2021.

24. N. Fuengfusin and H. Tamukoh, “Network with Sub-

networks: Layer-wise Detachable Neural Network ” ,

Journal of Robotics, Networking and Artificial Life, vol.

7, no. 4, pp. 240-244, 2021.

25. Y. J. Yeoh, T. Morie and H. Tamukoh, “An Efficient

Hardware-Oriented Dropout Algorithm ” ,

Neurocomputing, vol. 427, pp. 191-200, 2021.

26. Y. Tanaka, T. Morie and H. Tamukoh, “An amygdala-

inspired classical conditioning model on FPGA for home

service robots”, IEEE Access, vol. 8, pp. 212066-212078,

2020.

27. I. Kawashima, T. Morie and H. Tamukoh, “ FPGA

implementation of hardware-oriented chaotic Boltzmann

machines”, IEEE Access, vol. 8, pp. 204360-204377, 2020.

28. K. Honda and H. Tamukoh, “A Hardware-Oriented Echo

State Network and its FPGA Implementation”, Journal of

Robotics, Networking and Artificial Life, vol. 7, no. 1, pp.

58-62, 2020.

29. A. Suzuki, T. Morie and Hakaru Tamukoh, “A shared

synapse architecture for efficient FPGA implementation of

autoencoders”, PLoS ONE, vol. 13, no. 3, 2018.

30. T. Ono, D. Kanaoka, T. Shiba, S. Tokuno, Y. Yano, A.

Mizutani, I. Matsumoto, H. Amano and H. Tamukoh,

“Solution of World Robot Challenge 2020 Partner Robot

Challenge (Real Space)”, Advanced Robotics, vol. 36, no.

17-18, pp. 870-889, 2022.

31. Y. Yoshimoto and H. Tamukoh, “FPGA Implementation

of a Binarized Dual Stream Convolutional Neural

Network for Service Robots” , Journal of Robotics and

Mechatronics, vol. 33, no. 2, pp. 386-399, 2021.

32. Y. Ishida, T. Morie and H. Tamukoh, “ A hardware

intelligent processing accelerator for domestic service

robots”, Advanced Robotics, vol. 34, no. 14, pp. 947-957,

2020.

33. Y. Ishida and H. Tamukoh, “ Semi-Automatic Dataset

Generation for Object Detection and Recognition and its

Evaluation on Domestic Service Robots ” , Journal of

Robotics and Mechatronics, vol. 32, no. 1, pp. 245-253,

2020.

Authors Introduction

Mr. Yusuke Watanabe
He received his B.Eng. and M.Eng.

degrees from Waseda University,

Japan, in 2007 and 2009. He is pursuing

his Ph.D. degree in Kyushu Institute of

Technology. He is working for CRAFT

WORK Co., Ltd. His research interest

includes digital hardware design, soft-

computing, and home service robots.

Mr. Hakaru Tamukoh
He received his B.Eng. degree from

Miyazaki University, Japan, in 2001.

He received his M.Eng. and Ph.D.

degrees from Kyushu Institute of

Technology, Japan, in 2003 and 2006,

respectively. He was a postdoctoral

research fellow at Kyushu Institute of

Technology, from 2006 to 2007. He

was an assistant professor at Tokyo

University of Agriculture and

Technology, from 2007 to 2013. He is currently a professor

in the graduate school of Life Science and Systems

Engineering, Kyushu Institute of Technology, Japan. His

research interest includes digital hardware design, soft-

computing, and home service robots. He was the author of

works that won the Best Paper Award at IJCNN 2019, the

Best Live Demonstration Award at ISCAS 2019, the Best

Paper Award at ICONIP 2013. He is a member of IEEE,

IEICE, JNNS.

https://dl.acm.org/doi/10.1145/3020078.3021782
https://dl.acm.org/doi/10.1145/3020078.3021782
https://dl.acm.org/doi/10.1145/3020078.3021782
https://dl.acm.org/doi/10.1145/3020078.3021782
https://dl.acm.org/doi/10.1145/3020078.3021782
https://dl.acm.org/doi/10.1145/3020078.3021782
https://ieeexplore.ieee.org/document/8100173
https://ieeexplore.ieee.org/document/8100173
https://ieeexplore.ieee.org/document/8100173
https://alife-robotics.co.jp/LP/2021/OS19-2.htm
https://alife-robotics.co.jp/LP/2021/OS19-2.htm
https://alife-robotics.co.jp/LP/2021/OS19-2.htm
https://alife-robotics.co.jp/LP/2021/OS19-2.htm
https://dl.acm.org/doi/10.1109/TPDS.2020.3039409
https://dl.acm.org/doi/10.1109/TPDS.2020.3039409
https://dl.acm.org/doi/10.1109/TPDS.2020.3039409
https://dl.acm.org/doi/10.1109/TPDS.2020.3039409
https://dl.acm.org/doi/10.1109/TPDS.2020.3039409
https://ieeexplore.ieee.org/document/9758768
https://ieeexplore.ieee.org/document/9758768
https://ieeexplore.ieee.org/document/9758768
https://ieeexplore.ieee.org/document/9758768
https://www.jstage.jst.go.jp/article/nolta/13/2/13_397/_article
https://www.jstage.jst.go.jp/article/nolta/13/2/13_397/_article
https://www.jstage.jst.go.jp/article/nolta/13/2/13_397/_article
https://cir.nii.ac.jp/crid/1390010292576668288
https://cir.nii.ac.jp/crid/1390010292576668288
https://cir.nii.ac.jp/crid/1390010292576668288
https://cir.nii.ac.jp/crid/1390010292576668288
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0251329
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0251329
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0251329
https://www.atlantis-press.com/journals/jrnal/125957122
https://www.atlantis-press.com/journals/jrnal/125957122
https://www.atlantis-press.com/journals/jrnal/125957122
https://www.atlantis-press.com/journals/jrnal/125957122
https://www.atlantis-press.com/journals/jrnal/125949747
https://www.atlantis-press.com/journals/jrnal/125949747
https://www.atlantis-press.com/journals/jrnal/125949747
https://www.atlantis-press.com/journals/jrnal/125949747
https://www.semanticscholar.org/paper/An-Efficient-Hardware-Oriented-Dropout-Algorithm-Yeoh-Morie/af6c30b9f272bef061ac94cba35abbab977a492c
https://www.semanticscholar.org/paper/An-Efficient-Hardware-Oriented-Dropout-Algorithm-Yeoh-Morie/af6c30b9f272bef061ac94cba35abbab977a492c
https://www.semanticscholar.org/paper/An-Efficient-Hardware-Oriented-Dropout-Algorithm-Yeoh-Morie/af6c30b9f272bef061ac94cba35abbab977a492c
https://www.semanticscholar.org/paper/An-Efficient-Hardware-Oriented-Dropout-Algorithm-Yeoh-Morie/af6c30b9f272bef061ac94cba35abbab977a492c
https://ieeexplore.ieee.org/document/9260211
https://ieeexplore.ieee.org/document/9260211
https://ieeexplore.ieee.org/document/9260211
https://ieeexplore.ieee.org/document/9260211
https://ieeexplore.ieee.org/document/9252875
https://ieeexplore.ieee.org/document/9252875
https://ieeexplore.ieee.org/document/9252875
https://www.atlantis-press.com/journals/jrnal/125940366/view
https://www.atlantis-press.com/journals/jrnal/125940366/view
https://www.atlantis-press.com/journals/jrnal/125940366/view
https://www.atlantis-press.com/journals/jrnal/125940366/view
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0194049
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0194049
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0194049
https://www.tandfonline.com/doi/full/10.1080/01691864.2022.2115315
https://www.tandfonline.com/doi/full/10.1080/01691864.2022.2115315
https://www.tandfonline.com/doi/full/10.1080/01691864.2022.2115315
https://www.tandfonline.com/doi/full/10.1080/01691864.2022.2115315
https://www.tandfonline.com/doi/full/10.1080/01691864.2022.2115315
https://www.jstage.jst.go.jp/article/jrobomech/33/2/33_386/_article/-char/en/
https://www.jstage.jst.go.jp/article/jrobomech/33/2/33_386/_article/-char/en/
https://www.jstage.jst.go.jp/article/jrobomech/33/2/33_386/_article/-char/en/
https://www.jstage.jst.go.jp/article/jrobomech/33/2/33_386/_article/-char/en/
https://www.tandfonline.com/doi/abs/10.1080/01691864.2020.1769726?journalCode=tadr20
https://www.tandfonline.com/doi/abs/10.1080/01691864.2020.1769726?journalCode=tadr20
https://www.tandfonline.com/doi/abs/10.1080/01691864.2020.1769726?journalCode=tadr20
https://www.tandfonline.com/doi/abs/10.1080/01691864.2020.1769726?journalCode=tadr20
https://www.jstage.jst.go.jp/article/jrobomech/32/1/32_245/_article/-char/en/
https://www.jstage.jst.go.jp/article/jrobomech/32/1/32_245/_article/-char/en/
https://www.jstage.jst.go.jp/article/jrobomech/32/1/32_245/_article/-char/en/
https://www.jstage.jst.go.jp/article/jrobomech/32/1/32_245/_article/-char/en/
https://www.jstage.jst.go.jp/article/jrobomech/32/1/32_245/_article/-char/en/

