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A B S TR AC T   
Map construction, or mapping, plays an important role in robotic applications. Mapping relies on 
inherently noisy sensor measurements to construct an accurate representation of a surrounding 
environment. Generally, individual sensors suffer from performance degradation issues under 
certain conditions in the environment. Sensor fusion enables to obtain statistically more accurate 
perception and to cope with performance degradation issues by combining data from multiple 
sensors of different modalities. This paper describes the latest developments in data fusion and 
state-of-the-art mapping methods using data fusion. 
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1. Introduction 

Mapping is a process of constructing a map of an 

environment using robot perception. There exist multiple 

map representations, such as sparse point clouds, 

topological maps, and dense voxel grids. Mapping could 

be difficult due to adverse conditions (e.g., low lighting) 

and a presence of dynamic objects.  

In practice, one sensor may not produce an accurate map 

due to inherent sensor issues. For example, data obtained 

from a Light Detection and Ranging sensor (LiDAR), 

contains errors that increase as the distance to an object 

increases. A beam hitting a poorly reflecting surface 

leads to its distortion and data loss, adverse weather 

conditions cause a performance decrease. On the other 

hand, radars are less vulnerable to environmental 

conditions, but have less accuracy due to large wave sizes 

- from centimeters to meters. Mono- and stereo cameras, 

in turn, depend on lighting conditions and require a 

precise intrinsic calibration to correct an image distortion. 

To obtain reliable maps, it is required to combine 

strengths of each sensor to cope with their weaknesses.  

 

Sensor fusion, or data fusion, is a technique for 

combining data from multiple sensors in a way that 

enables to obtain a more reliable and accurate 

information about a system being measured. 

An aggregation of measurements statistically improves 

an overall accuracy using multiple sources of information. 

For instance, one can combine range data from LiDAR, 

radar, sonar, and RGB-D cameras. 

Fig. 1 shows one of sensor configurations mounted on an 

autonomous car for a data fusion. LiDAR and radar 

estimate a distance to objects, and a camera provides 

color information to form a point cloud. This approach is 

actively used in robotics, particularly, in Simultaneous 

Localization and Mapping (SLAM) [1]. 

2. Sensor Fusion 

A high-level architecture of a sensor fusion system 

consists of the following components: 

1. sensors that independently measure an observed 

quantity; 

2. mathematical models that convert the observed 

quantity into a target value (e.g., calculating a 

position from distance measurements); 
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3. an inference algorithm that calculates a resulting 

target value by combining data from all sensors. 

 

 
Fig. 1. A schematic representation of data fusion from a 

camera, LiDAR, and radar for a self-driving car. 

 

Modern data fusion approaches can be classified 

according to their mathematical tools: traditional and 

based on machine learning (ML) [2]. Methods can also 

be divided according to a data fusion level [3]. 

1. a signal level fusion – integrating raw data from 

sensors through a direct relationship between 

measurements; 

2. a feature level fusion – combining data from sensors 

using detected features; 

3. a decision-making level fusion – an inference of a 

single solution from multiple hypotheses based on 

data from different sensors. 

Signal-level fusion combines raw data. The most 

applicable data correlation technique performs an 

extrinsic calibration of a system consisting of several 

sensors. A calibration problem solution usually consists 

of finding a homogeneous transformation matrix, which 

is a transformation between the coordinate systems of 

sensors. Extrinsic calibration methods are divided into 

traditional (using a fiducial target) and self-calibration 

methods (using scene data). Traditional methods use 

physical objects as a marker that introduces geometric 

constraints. For example, it is common to use a planar 

board (chessboard, ArUco, Apriltag, etc.) for an extrinsic 

calibration of a LiDAR-camera system. In this case, a 

point-to-plane constraint is used, which states that points 

obtained from the LiDAR lie on a plane of a planar board. 

There are also solutions based on more complex 

calibration objects, such as a V-shaped calibration object, 

which provides six point-to-plane constraints [4]. The 

paper [5] presents a method of finding extrinsic 

parameters through scanning of spherical target. Self-

calibration, or online calibration, is an approach that 

allows calibrating a sensor system based on the 

information about the environment. 

Some of the approaches are based on ML. For instance, 

in [6], the authors present a neural network which refines 

calibration parameters. An image, a depth map, and an 

initial solution are issued to the RegNet. An output matrix 

is used to compute an optimal transformation matrix. 

Data from a LiDAR and a camera are combined using 

features that are calculated by passing through 

convolutional layers. This approach characterizes the 

feature level fusion, but since the output presents 

extrinsic parameters, we consider the method as the 

signal-level. In [7], a transformer is added to the 

convolutional layers.  

Traditional approaches are also used in online calibration. 

The paper [8] presents a calibration using Structure-

from-Motion (SfM) methods. SfM allows obtaining an 

initial guess for intrinsic and extrinsic parameters. Then 

the bundle adjustment method corrects a solution by 

minimizing a reprojection error. 

Feature-level fusion combines detected features from 

different sensors. In ML features are primarily extracted 

from dense data (e.g., from image pixels) using 

convolutional neural networks (CNNs). In [9] a CNN is 

used as an encoder, obtained features are decoded to 

obtain normals and an initial dense depth of a scene. In      

[10] non-local neighbors and their affinities of each pixel 

are used instead of normals. A feature extraction enables 

one to semantically describe a map. In [11] a semantic 

scene completion network (SSCNet) is proposed, which 

simultaneously outputs an occupancy grid and semantic 

labels for all voxels. The paper [12] presents a multi-

modal deep feature architecture of a neural network for a 

point cloud refinement from LiDAR using a single image. 

Decision-level fusion combines decisions of multiple 

classifiers into a common decision about a map. For 

example, one can semantically combine objects detected 

from RGB-D and LiDAR. 

3. Multi-modal Map Construction 

Data fusion is used to construct maps based on data of 

different modalities. A mapping task is generally not 

independent and is solved along with a localization in 

SLAM. The paper [13] presents a SLAM algorithm for 

unmanned ground vehicles (UGV) based on an 

estimation of an odometry using data from 2D LiDAR. 

To refine the odometry and correctly display an 

environment, key frames obtained using LiDAR and a 

stereo camera are combined by finding cloud point 

correspondences. The correspondence between the 

clouds of related keyframes is calculated using the 

Iterative Nearest Point algorithm. The map is generated 

as a Probabilistic Occupancy Grid (POG) (Fig. 2). This 

representation of a map is considered as a basic Bayesian 

integration method [14]. The occupancy grid map divides 

an environment into cells of equal size. Each cell carries 
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information about the probability of its occupancy. The 

Bayesian rule allows updating initially constructed maps. 

Computational performance is highly dependent on a 

map resolution and on a number of degrees of freedom. 

In practice, 2D maps are often considered due to a lower 

complexity and easier data fusion [15].  In [13] a 2D map 

is created, which simplifies calculations complexity. 

 

 
Fig. 2. The representation of occupancy grid. 

 

In [16] a direct multi-sensor SLAM is used. To compare 

data from a rangefinder and a camera, the traditional 

approach of extrinsic calibration with a chessboard is 

utilized. Data loss can be avoided with a signal fusion 

approach. A reconstructed map is displayed as a 3D point 

cloud, where each point has cartesian coordinates and a 

color. Further, point clouds can be transformed by a 

surface reconstruction into polygonal or triangle mesh 

models [17], non-uniform rational B-spline surface 

models [18] or CAD models [19]. To construct and refine 

a map, state estimation techniques are employed [20], 

such as recursive filtering approaches. In [21] it is 

proposed to use Unscented Particle Filter and Unscented 

Bingham Filter to reduce an uncertainty. 

In [22] authors use data from a LiDAR, an inertial 

measurement unit (IMU) and encoders for localization 

and mapping of a UGV. Measurements from the IMU 

and encoders are combined to assess a robot's pose. 

Range data is used to estimate odometry. In [23] a robot's 

pose is estimated using data from an IMU and a stereo 

camera. Received information is associated with 

rangefinder data and a map is constructed. In [24] GPS 

data is used for a localization in addition to an IMU and 

a rangefinder. Sensor data is issued to the Kalman filter 

– a position, a velocity and an attitude are determined. 

4. Conclusion 

In conclusion, most of the reviewed sensor fusion 

mapping techniques are based on traditional methods, 

such as Extended Kalman Filtering and particle filters. 

The feature-level fusion is a more time-efficient 

approach, which involves feature extraction and 

matching, which improves computational performance. 

In the SLAM systems case, bundle adjustment 

optimization methods prevail. Most of the time, laser 

scanners are used to improve camera depth estimation 

capabilities. Machine learning solutions allow learning 

depth from images but lack accuracy and reliability. 
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