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A B S TR AC T  
Development of neuromorphic chips with biologically plausible learning mechanisms is vital for 
investigating brain-like learning processes. One such mechanism is Spike-timing dependent 
plasticity (STDP), but implementing its multi-bit circuitry requires significant silicon area. In a 
prior study, we introduced a hardware-friendly learning rule named adaptive STDP. Through 
experiments, we demonstrated its performance similarity to the ideal STDP rule in a basic 
biologically plausible spike pattern detection task involving a single neuron. Building upon this, 
our present study extends the adaptive STDP learning rule to encompass lateral inhibition, a 
prevalent motif in the brain. We apply it to a spike pattern detection model featuring multiple 
neurons that engage in competition to detect multiple patterns. Furthermore, we investigate the 
performance of the ideal STDP rule using 4-bit and 6-bit synapse resolution and present a 
comparative analysis of the results. 
 
© 2022 The Author. Published by Sugisaka Masanori at ALife Robotics Corporation Ltd. 
This is an open access article distributed under the CC BY-NC 4.0 license 
(http://creativecommons.org/licenses/by-nc/4.0/). 

1. Introduction 

Substantial global resources are dedicated to 

comprehending the brain’s information processing and 

learning mechanisms. Development of neuromorphic 

chips with biologically plausible neuron and synapse 

circuits constitutes a fundamental component of this 

endeavor [1], [2]. Within the brain, neuronal cells engage 

in interaction at the microcircuit level via various (yet 

undiscovered) network motifs. To enhance our 

comprehension of brain microcircuits, it is essential to 

investigate these motifs through a bottom-up approach, 

constructing them at the level of neuronal cells and 

synapses. This process of exploration is facilitated by 

neuromorphic chips employing the "analysis by 

synthesis" methodology. By utilizing their neuron and 

synapse circuits, these chips can create scalable 

renditions of recognized network motifs, offering the 

potential to gain insights into network dynamics through 

real-time emulation. Furthermore, computational models 

of these mechanisms will contribute to the development 

of brain-like artificial intelligence, fostering potential 

applications in technologies that require ultra-low power 

consumption and online learning capabilities, such as 

Internet of Things (IoT) technology and Brain-Computer 

Interface (BCI) decoders. 

In this study, our emphasis lies on the mixed-signal 

neuromorphic realization of a widely prevalent network 

motif, lateral inhibition with spike-timing dependent 

plasticity (STDP). We also provide post-silicon-

validated circuit models for the same. Lateral inhibition 

is easily implemented in neuromorphic chips and many 

variants of STDP circuits have been proposed in the past. 

Nevertheless, the implementation of the ideal STDP rule 

often necessitates synapse circuits with remarkably high 

efficacy resolution, surpassing 10 bits. Such high 

resolution is attainable through pure analog circuits that 

store efficacy on a capacitor [3]. However, in these 

circuits capacitor leakage leads to loss of the learned 

efficacy over time, forgetting any learnt information. Bi-

stable synapse circuits [4] address this leakage problem, 

but are limited to just two long-term stable states, 

offering a resolution of approximately 1.5 bits. This low 

resolution has a detrimental effect on the learning 

capability of the network causing it to deviate 
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significantly from the performance of the ideal model. In 

mixed-signal circuits, efficacy is implemented using 

digital memories and digital-to-analog converters 

(DACs). The silicon area and energy requirements of 

DAC doubles with each additional bit of resolution. 

Consequently, the synapse resolution is constrained to 

about 4 to 6 bits in the majority of chips [1], [5]. Another 

approach involves the utilization of novel non-volatile 

memory devices such as ferro-electric field-effect 

transistors (FeFETs) and memristors for implementing 

synaptic efficacy [6], [7]. However, these devices are still 

in the research phase, and a consistent efficacy resolution 

exceeding 3 bits remains unattained. Furthermore, these 

devices come with their own implementation overheads. 

For instance, the FeFET device requires high-voltage 

programming pulses (> 2.5 V) to adjust the efficacy value. 

Synapse resolution in the brain is a topic of debate, with 

some studies indicating bi-stable resolution while others 

suggesting the possibility of individual synapses having 

multi-bit resolution [8], [9]. Additionally, it has been 

observed that the STDP learning process is influenced 

not only by spike timing but also by the action of 

neurotransmitters. For instance, in the presence of 

dopamine, a neurotransmitter, the synapses are 

potentiated irrespective of the causal order of pre- and 

postsynaptic spikes [10]. 

Building upon this observation, a previous study 

introduced an adaptive STDP learning rule utilizing only 

4-bit synaptic efficacy [11]. Its performance was 

demonstrated using a biologically plausible spike pattern 

detection model comprising a single neuron. 

Performance verification of the adaptive STDP rule 

encompassed numerical simulations as well as 

experimentation on a mixed-signal neuromorphic chip, 

showing similar results to the ideal STDP rule [11], [12]. 

The advantage of using the adaptive STDP rule lies in its 

relatively simpler circuitry compared to the circuit 

required for implementing the ideal STDP rule in a 

mixed-signal setup, which involves DACs and digital 

memory. 

In this study, we apply the adaptive STDP rule to a more 

realistic biologically plausible network encompassing 

multiple neurons engaged in lateral inhibition. The input 

spike train model and the network motif were previously 

described in study that employed the ideal STDP rule 

with high-resolution synapses [13].  In this study, the 

same input and network motif are used but we employ 

the adaptive STDP rule with 4-bit synapses. We then 

compare its performance with the ideal STDP rule, which 

is constrained to 4-bit and 6-bit synapse resolutions 

suitable for implementation in neuromorphic hardware. 

All three STDP rules are of the additive type, with a 

bounded range, and consider only nearest neighbor spike 

pairs when calculating changes in synaptic efficacy. 

The subsequent sections of this manuscript are 

structured as follows. Section 2 outlines the network 

model, providing details of the input spike trains, neuron, 

synapse, and the learning rules. Section 3 presents the 

obtained results, and the concluding section engages in a 

discussion of these findings and explores potential 

avenues for future research. 

2. Network Model 

The target network consists of nine neurons that inhibit 

each other in an all to all fashion. Each neuron receives 

stochastic input spikes through 2048 excitatory synapses. 

Within these stochastic spike trains, three distinct spike 

patterns are randomly embedded (as depicted in Fig. 1), 

with the network's objective being the recognition of 

these patterns. The embedded spike patterns are 

exclusively characterized by spike timings, emulating the 

temporal neural code observed across various brain 

regions. The input spike trains mirror those employed in 

the reference study [13], adhering solely to the statistical 

properties typically assumed in neuroscience. The spike 

train generation procedure is described next. 

2.1. Input Spike Train Model 

 For each afferent (total of 2048 afferents), input spike 

trains were generated using an inhomogeneous Poisson 

process, where the instantaneous firing rate ranged from 

0 to 90 Hz. The minimal interval for the frequency 

transition from 0 to 90 Hz was 50 ms. Each afferent 

spiked at least once in 50 ms establishing an average 
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frequency of 54 Hz for each spike train. After generating 

stochastic spike train spanning 225 s, three segments, 

each lasting 50 ms and representing spike patterns to be 

embedded, were randomly selected from it. This ensures 

that the embedded spike patterns share similar 

characteristics with the stochastic Poisson spikes. The 

patter appearance frequency was set at 11.1 % for each 

pattern. Subsequently, the spike train was partitioned into 

50 ms long sections, and a specific number of these 

sections, determined randomly based on the pattern 

appearance frequency, were replaced by the spike 

patterns to be embedded. This replacement was carried 

out sequentially, with pattern 1 being embedded first, 

followed by patterns 2 and 3. In other words, the three 

spike patterns collectively occupied one-third of the total 

simulation time. Additionally, a Gaussian jitter with a 

mean of zero and a standard deviation of 1ms is 

introduced in the spike patterns during the copy-paste 

process. This copy-and-replace process is exclusively 

administered to half of the randomly selected afferents 

Fig. 1:  The raster plot illustrates the input spike trains, featuring three embedded spike patterns distinguished by distinct 

colors. Each pattern is encoded by 1024 out of 2048 afferents. The spike trains exhibit jitter in spike timing within the 

patterns, with a standard deviation of 1 ms, alongside supplementary stochastic spikes at a frequency of 10 Hz. The 

afferents, on average, maintain a spiking frequency of 64 Hz. These spike patterns are temporally coded, specifically 

characterized by the spike timing of the afferents, while the spiking rate remains consistent both within and outside the 

patterns. 
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(1024 out of 2048), while the remaining afferents solely 

encode stochastic spikes. Consecutive 50 ms sections 

were avoided in this copy-and-paste process. Both inside 

and outside the 50 ms long spike patterns, the population 

average spiking rate remains consistent, and the patterns 

are exclusively defined by the precise spike timing of the 

afferents. Subsequently, to further increase the difficulty 

of pattern detection, 10 Hz spontaneous spikes were 

incorporated into all the spike trains. This elevated the 

average firing rate to approximately 64 Hz across the 

afferent population. 

2.2. Neuron Model 

The network consists of nine leaky integrate-and-fire 

(LIF) neurons, each of which receive spike inputs 

through 2048 excitatory synapses as illustrated in Fig. 2. 

Similar to the reference study [13], we employ Gerstner’s  

Spike response model (SRM) to model the neurons [14]. 

Whenever a presynaptic spike occurs at time 𝑡j, an 

excitatory postsynaptic potential (EPSP) is added to the 

neuron’s membrane potential. This EPSP kernel is 

described by 

𝜀(𝑡 − 𝑡𝑗) = 𝐾 ⋅ (exp (−
𝑡−𝑡𝑗

𝜏𝑚
) − exp (−

𝑡−𝑡𝑗

𝜏𝑠
)) ⋅ 𝑢(𝑡 −

𝑡𝑗),                                (1) 

where 𝜏𝑚  and 𝜏𝑠  are the membrane and synapse time 

constants, their values are 10 ms and 2.5 ms, respectively. 

The function 𝑢  corresponds to the Heaviside step 

function. K is an arbitrary constant chosen so that the 

maximum amplitude of the EPSP kernel is 1. When the 

membrane potential exceeds a predetermined threshold 

(T), the neuron generates a spike. For every postsynaptic 

spike at time 𝑡i , the spike profile and the after-

hyperpolarization is described by 

𝜂(𝑡 − 𝑡𝑖) = 𝑇 ⋅ (𝐾1 ⋅ exp (−
𝑡−𝑡𝑖

𝜏𝑚
) − 𝐾2 ⋅

{exp (−
𝑡−𝑡𝑖

𝜏𝑚
) − exp (−

𝑡−𝑡𝑖

𝜏𝑠
)}) ⋅ 𝑢(𝑡 − 𝑡𝑗),             (2) 

where constants K1=2 and K2=4 set the amplitude of the 

spike and the after-hyperpolarization, respectively. In 

addition, for every postsynaptic spike, the spiking neuron 

inhibits other neurons through inhibitory synapses 

adding an inhibitory postsynaptic potential (IPSP) to 

their membrane potential. This IPSP kernel is modelled 

using the EPSP kernel with a scaling factor of 𝛼 = 0.25 

For a postsynaptic spike occurring at time 𝑡k , it is 

described by 

𝜇(𝑡 − 𝑡𝑘) = −𝛼 ⋅ 𝑇 ⋅ (𝜖(𝑡 − 𝑡𝑘)).                              (3) 

Combining the three kernels, the membrane 

potential of the neuron at any time instant is given by 

v = η(𝑡 − 𝑡𝑖) + ∑ 𝑤𝑗 ⋅ 𝜀(𝑡 − 𝑡𝑗) 𝑗/𝑡𝑗>𝑡𝑖
+ ∑ 𝜇(𝑡 −𝑗/𝑡𝑘>𝑡𝑖

𝑡𝑘) ,                                                          (4) 

where 𝑤𝑗  represents the synaptic efficacies of the 

excitatory synapses, which are constrained between the 

minimum value of 0 and the maximum value of 1. All 

three kernels are rounded off to zero when 𝑡 − 𝑡𝑖,𝑗,𝑘  

Fig. 3: STDP learning functions. (a) Ideal STDP rule that necessitates high-resolution synapses. (b) STDP rule constrained 

by synapse bit resolution. (c) Rectangular STDP rule. (d) Adaptive STDP rule: In the rectangular STDP rule, 𝑡post  is 

increased to higher values during learning while 𝑡pre  remains constant. 

Fig. 2: Network model comprising nine LIF neurons (N1-N9) that laterally inhibit each other (blue connections). The 

neurons are simulated by 2048 synapses that receive input spike trains. The excitatory synapses are equipped with STDP 

and have efficacies bounded between 0 and 1. In contrast, the inhibitory synapses do not possess learning capability, and 

their efficacies remain constant. 
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exceeds 7𝜏𝑚. Additionally, for every postsynaptic spike, 

the spiking neuron’s EPSP and IPSP kernels are flushed. 

The initial synaptic efficacies of excitatory synapses are 

randomly set and are subsequently modified while 

learning. The input spike trains containing the embedded 

spike patterns as described in Sec. 2.1 activate the 

excitatory synapses and cause the neurons to spike. The 

randomly assigned initial efficacy values initially 

determine the spiking frequency of neurons. Over time, 

with successive appearances of spike patterns, the 

learning rule modifies the synaptic efficacies and directs 

the neurons to spike in the presence of these patterns [11]. 

The introduction of lateral inhibitory synaptic 

connections induces competition among neurons, 

reducing the probability of multiple neurons spiking 

simultaneously within the same spike pattern. 

Consequently, this lateral inhibition enhances the 

likelihood that different neurons will learn distinct 

patterns or different segments within the 50 ms long 

pattern. The inhibitory synapses do not have learning 

capability and their efficacy remains constant. 

2.3. STDP-based Learning Rules 

2.3.1 4-bit and 6-bit STDP rule 

The ideal STDP rule adjusts synaptic efficacy 

according to the spike interval between pre- and 

postsynaptic neurons, with the modification exhibiting an  

 

 

exponential dependence on the interval, as depicted in 

Fig. 3(a) [13]. This is mathematically expressed as: 

∆𝑤𝑗 = {
    𝑎+ ⋅ exp (

𝑡𝑗−𝑡𝑖

𝜏+ )            if 𝑡𝑗 ≤ 𝑡𝑖      (𝐿𝑇𝑃),

    𝑎− ⋅ exp (−
𝑡𝑗−𝑡𝑖

𝜏− )       if 𝑡𝑗 > 𝑡𝑖      (𝐿𝑇𝐷),
    (5) 

where 𝑡𝑖  ( 𝑡𝑗 ) denotes the timing of the postsynaptic 

(presynaptic) spike, 𝜏−(𝜏+) denotes the time constant of 

the decaying exponential controlling depression 

(potentiation) of synapses is, and the learning rate 𝑎− 

( 𝑎+)  controls the maximum change in the value of 

synaptic efficacy at any instant during depression 

(potentiation). In the reference study [13], following 

values were used 𝑎+ =0.03125, 𝑎− =0.85⋅ 𝑎+, 𝜏+=16.8 

ms, 𝜏− =33.7 ms. These values keep the function biased 

towards depression as 𝑎+𝜏+ < 𝑎−𝜏− . We use these 

parameters as reference to tune the values for 4-bit and 6-

bit STDP rules.  

In mixed-signal circuit implementation of 

STDP rule with DAC and digital memory, the resolution 

Fig. 3: STDP learning functions. (a) Ideal STDP rule that necessitates high-resolution synapses. (b) STDP rule constrained 

by synapse bit resolution. (c) Rectangular STDP rule. (d) Adaptive STDP rule: In the rectangular STDP rule, 𝑡post  is 

increased to higher values during learning while 𝑡pre  remains constant. 
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of DAC is generally constrained to under 6 bits. Here we 

approximate the exponential traces of the learning 

function by a staircase-like traces as shown in Fig. 3(b). 

The synaptic efficacies for 4 (6)-bit synapses are 

quantized to 16 (64) different values and a single bit 

change corresponds to efficacy change by 0.667 (0.0159). 

The minimum possible change in the value of synaptic 

efficacy is 1 bit and the maximum possible change 

depends on the number of steps in the staircase-like 

function in Fig. 3(b). The number of steps for 

potentiation is kept higher than that for depression to 

keep a close approximation to the ideal learning function 

in Fig. 3(a). Best results were obtained with 4 (3) steps in 

the 4-bit case and 9 (8) steps in the 6-bit case for the 

potentiation (depression) function. The learning 

parameters 𝜏+ and 𝜏− were the same as the reference 

values of 16.8 ms and 33.7 ms, respectively. In the case 

of 4-bit alone, the gap between the learning parameters 

𝜏+ and 𝜏− had to be further modified to 13.8 ms and 43.7 

ms, respectively to bias the network parameters towards 

depression. With the ideal model values of 33.7 ms and 

16.8 ms, learning did not occur. 

2.3.2 4-bit Adaptive STDP rule 

The adaptive STDP rule and its circuit implementation 

is described in detail in [11], [12]. It is illustrated in Fig. 

3(c), Fig, 3(d) and is mathematically described as follows 

 

∆𝑤𝑗 = {
+1 bit, if 𝑡𝑗 ≤ 𝑡𝑖 , 𝑡𝑖 − 𝑡𝑗 < 𝑡pre, and w < 𝑤max

−1 bit, if 𝑡𝑗 > 𝑡𝑖 , 𝑡𝑗 − 𝑡𝑖 < 𝑡post,  and w > 𝑤min
, (6) 

where 𝑡𝑖  (𝑡𝑗 ) denotes postsynaptic (presynaptic) spike 

times, and 𝑡post(𝑡pre) represents the maximum delay of 

the presynaptic (postsynaptic) spike following the 

postsynaptic (presynaptic) spike that leads to depression 

depression, LTD (potentiation, LTP). Unlike the STDP 

rule in Fig. 3(a), Fig. 3(b), the update in efficacy at any 

time instant is restricted to 1-bit, which simplifies its 

circuit implementation significantly. The 4-bit efficacy 

saturates at its maximum value of 𝑤max = 1  and 

minimum value of  𝑤min = 0. The learning parameter 

𝑡pre  is set to 4.6 ms and 𝑡post  is increased gradually 

during learning from 5 ms to higher values saturating at 

9.8 ms as shown in Fig. 3(d). 

3. Results 

Here we present the simulation results that quantify 

the performance of the network in Fig. 2. utilizing the 

three learning rules. A total of 100 simulation runs were 

conducted using (100 different) inputs spike trains 

generated according to the procedure detailed in Sec. 2.1. 

A run was deemed to be successful when all three spike 

patterns were detected with a hit rate surpassing 95 % and 

false alarms occurring at a rate below 1 Hz during the 

final 150 s of the run (one-third of the total run time), 

similar to the success criterion in the reference study [13]. 

The success rate was calculated using all runs that met 

the hit rate and false alarm criterion. 

The performance with the three different learning rules 

are tabulated in Table 1. The best performance is 

observed with 6-bit STDP rule where all three patterns 

are detected by atleast one of the nine neurons in all the 

runs. The adaptive STDP rule and the 4-bit STDP rule 

have similar performance. The superimposed membrane 

potentials of nine neurons during a successful run 

employing the adaptive STDP rule are shown in Fig.4(a), 

while Fig.4(b) illustrates the same during the final second 

of the run. The three 50-ms long color-shaded segments 

indicate the location of three spike patterns within which 

the neurons learn to spike. 

4. Discussion 

This study investigated the implementation of the 

motif of lateral inhibition in a neuromorphic system 

incorporating STDP-based learning rules. Previous 

studies have demonstrated the presence of this motif in 

Table 1 

Summary of simulation results. The number of steps in the learning function or the maximum allowable change in efficacy 

is represented by ∆𝑤𝑚𝑎𝑥. 

Learning 

Rule 

Synapse 

Resolution 

Parameters Success 

Rate 

Adaptive 

STDP 

4-bit 𝑡pre= 4.6 ms, 𝑡post_max=9.8 ms, ∆𝑤𝑚𝑖𝑛=∆𝑤𝑚𝑎𝑥 =1/15, T=370 93 % 

STDP 6-bit 𝜏+= 16.8 ms, 𝜏−=33.7 ms, ∆𝑤𝑚𝑖𝑛=1/63, ∆𝑤𝑚𝑎𝑥 = 10 ∗ ∆𝑤𝑚𝑖𝑛, T=500 100 % 

4-bit 𝜏+= 13.8 ms, 𝜏−=43.7 ms, ∆𝑤𝑚𝑖𝑛=1/15, ∆𝑤𝑚𝑎𝑥 = 4 ∗ ∆𝑤𝑚𝑖𝑛, T=500 88 % 
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various brain regions and showed its ability to classify 

spike patterns [15], [16]. In our study, we specifically 

examined the performance of this motif by constraining 

the resolution of synaptic efficacy to be equal to 4 and 6 

bits. We conducted a comparative analysis, evaluating 

the adaptive STDP rule employing 4-bit synapses against 

both 4-bit and 6-bit STDP rules, using a biologically 

plausible spike pattern classification task. Our findings 

indicate that all three rules achieved reliable pattern 

classification performance, with the 6-bit ideal STDP 

rule demonstrating the highest performance. 

Although the 6-bit ideal STDP rule demonstrates 

better performance, its implementation in mixed-signal  

neuromorphic chips has a considerable overhead. 

Specifically, compared to a 4-bit synapse circuit, a 6-bit 

synapse requires approximately four times more silicon 

area and consumes more power. Additionally, the 4-bit 

and 6-bit STDP models require implementation of the 

staircase-like function shown in Fig. 3(b). This requires 

additional circuit components such as adders, subtractors, 

and lookup tables. In contrast, the adaptive STDP rule 

does not require these extra components. Since the 

adaptive STDP rule restricts efficacy change to one bit at 

a time, an up-down counter circuit is sufficient for 

updating the efficacy values. 

The advantage of using adaptive STDP rule is its 

simplified circuitry, which consumes less silicon area and 

power compared to any ideal STDP circuit of similar bit 

resolution. A circuit to implement adaptive STDP is 

described in [12], where it was shown that its 

performance on a mixed-signal chip is similar to the ideal 

STDP model. This study extends this validation by 

demonstrating its scalability to larger networks capable 

of detecting multiple patterns. This scalability suggests 

that the adaptive STDP rule is well-suited for large-scale 

implementation and exploration of lateral inhibitory 

networks on neuromorphic chips. 

The input spike train model was chosen due to its 

biological plausibility, and all network parameters were 

manually tuned to achieve optimal performance. It was 

observed that the learning parameters for the adaptive 

STDP rule varied depending on the chosen neuron model. 

In [11], a compartmental neuron model with a 

qualitatively modeled soma compartment was employed, 

Fig. 4: Superimposed membrane potentials of nine neurons (a) across the complete run duration; (b) during the final second 

of the run. During the initial phase of the run, the neurons spike randomly and in time they learn to spike within the patterns. 

Three distinct colour shaded segments represent the three spike patterns. Two neurons stop spiking and the remaining 

seven neurons learn different segments of the three embedded 50-ms long spike patterns.  



  

211 
 

and the learning parameters 𝑡pre and 𝑡post_max around 10 

ms and 35 ms, respectively, yielded the best performance. 

In contrast, in this study using a single compartment LIF 

neuron model, the best performance was achieved with 

𝑡pre and 𝑡post_max approximately at 4.6 ms and 9.8 ms, 

respectively. The exploration of parameter dependence 

on the chosen neuron model will be further investigated 

in future studies. 

For the 6-bit STDP rule, the learning parameters 𝜏+ 

and 𝜏−, similar to those used in the high-resolution STDP 

rule [13] (Fig. 3(a)), performed well. However, in the 4-

bit case, the values of 𝜏+ and 𝜏− had to be adjusted from 

their reference values of 16.8 ms and 33.7 ms to 13.8 ms 

and 43.7 ms, respectively. Furthermore, in the 4-bit and 

6-bit ideal STDP rules, the number of steps in the 

learning function, which control the maximum allowable 

change in synaptic efficacy at any given time, played a 

significant role in the network's performance. The 

number of steps for the 4-bit and 6-bit cases differed, and 

they were chosen through manual tuning using multiple 

combinations. It is possible that the performance of the 

network for the 4-bit case be further improved by 

selecting a better set of parameters and this should be 

explored in the future studies.  

Compared to the reference study [13], which 

employed the high resolution ideal STDP rule, and our 

previous study, which utilized the unidirectional two-

compartment neuron model with the 4-bit adaptive STDP 

rule [17], the results in this study demonstrate significant 

improvement. In both previous studies, only in about 

two-thirds of the runs (~65-70 out of 100) all three 

patterns were successfully detected. However, an issue 

was identified during the investigation, revealing a bug 

in the code responsible for generating the input spike 

trains. This bug led to the unintentional deletion of the 

embedded spike patterns (either one or two out of three) 

in the generated spike trains. Specifically, this occurred 

when, during the random copy-and-paste process of 

embedding the spike patterns, the first or second spike 

pattern was placed in the last 50-ms slot of the 225-s long 

spike train. As a consequence of the missing spike 

patterns in certain input spike trains, the overall 

performance was negatively affected 

In this study, the network was confined to a single 

layer, and the neurons learned a short segment within the 

50-ms long patterns (Fig. 4(b)). A multi-layered network 

could potentially detect patterns of longer duration. Also, 

in the adaptive STDP rule, only the parameter controlling 

depression, ( 𝑡post ) was modified while learning. The 

parameter 𝑡precan also be modified while learning, and 

these adjustments could be contingent on the network's 

state rather than relying on preprogrammed external 

control. Like the learning rules in this study, most 

neuromorphic chips implementing STDP-based rules 

only consider nearest neighbor spike pairs to modify the 

efficacy values. However, many variations of the STDP 

rule with multi-spike interactions have been observed in 

the brain [18], [19]. It is crucial to develop 

implementations of these rules with minimal hardware 

requirements for the development of biologically 

plausible neuromorphic chips. These potential 

modifications will be investigated in future studies. 
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