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ABSTR AC T 
Currently, the application of SLAM systems in the field of navigation is quite active. However, 
the detection accuracy of classical SLAM systems when applied in dynamic environments is not 
high. This is because some dynamic objects in dynamic environments may occlude the 
environmental features that should have been extracted by the SLAM system. In order to solve 
this problem, my research conducts analysis on the detection process in dynamic environments 
and designs a solution: to identify and remove dynamic objects in dynamic environments to 
improve detection accuracy. In this research, an object detection algorithm YOLOv5 is first used 
to detect, identify, and remove dynamic objects in the environment extracted by the SLAM system. 
Then, the remaining static environmental features are passed into visual SLAM for conventional 
SLAM environment calculation and localization work. Finally, the modified integrated algorithm 
is validated and analyzed on the TUM dataset for feasibility. The results indicate that this approach 
successfully removes dynamic objects and effectively improves the robustness of visual SLAM 
applications in dynamic environments. 

© 2022 The Author. Published by Sugisaka Masanori at ALife Robotics Corporation Ltd. 
This is an open access article distributed under the CC BY-NC 4.0 license 
(http://creativecommons.org/licenses/by-nc/4.0/). 

1. Introduction

Recently, the robotics industry is developing rapidly
and gradually being applied in various fields, such as 
factory handling, mine inspection, or delivery scenarios 
in daily life. Visual SLAM (Simultaneous Localization 
and Mapping) is one of the important technologies in this 
regard. It enables autonomous localization and map 
building for robots, vehicles, or other mobile devices in 
environments without GPS signals. Visual SLAM 
primarily relies on sensors such as cameras to acquire 
environmental information. Compared to additional 
sensors like GPS or LiDAR, visual sensors are more 
common and cost-effective. Visual SLAM is applicable 
to various environments, including indoor, outdoor, 
structured, or unstructured environments, and can 
generate high-precision maps accordingly. This also 

makes it a research hotspot in the field of mobile robotics. 
For developers, there is a rich variety of open-source
libraries and algorithms for visual SLAM technology, 
allowing for customization and extension according to 
specific requirements to meet the needs of different 
application scenarios. The YOLO (You Only Look Once) 
series is a popular real-time object detection algorithm. It 
directly predicts the entire image using a single neural 
network model, without the need for complex sliding 
windows or region proposal generation. Therefore, it has 
high real-time performance and can complete object 
detection tasks in a short time. Additionally, the YOLO 
algorithm is designed to be simple, with a small number 
of parameters and a high degree of model lightweight, 
making it suitable for deployment and application on 
embedded devices and mobile platforms, enabling real-
time object detection tasks. Combining the two can 
satisfy real-time and efficient detection requirements. 
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2. Problem Description

2.1. Overview of visual SLAM technology 

Because this article is based on the visual SLAM 
algorithms, it first introduces the relevant research trends 
of visual SLAM. At present, some mainstream visual 
slam technologies include VINS Mono, RTABMap, 
PTAM, LSD-SLAM, DSO, and ORBSLAM series [1]. 
The entire working process of visual SLAM can roughly 
include the following parts. First, environmental 
information is captured in the form of images through a 
camera and fed into the system, forming a video stream 
in chronological order. Then, the system extracts feature 
from each image in the video stream and matches features 
between adjacent frames, calculating the camera's motion 
through minimizing pixel intensity values. The methods 
for feature matching mainly include optical flow and 
direct methods. Optical flow identifies image feature 
points and estimates camera motion through triangulation 
or epipolar geometry. Direct methods utilize pixel blocks 
or extract image corners directly, calculating motion 
estimation based on grayscale values.  

After motion estimation, the data undergoes noise 
filtering to achieve an optimal pose estimation. 
Subsequently, the global map is estimated using 
maximum a posteriori probability. In 2020, Campos et al. 
[2], introduced ORB-SLAM3, which builds upon the 
research conducted by Artal et al., and has emerged as a 
prominent feature-based SLAM system in the field.  

2.2. Impact of Dynamic Objects on Visual SLAM 

ORB-SLAM3 is a famous algorithm in visual SLAM, 
primarily detecting the environment through orb feature 
extraction. Its structure consists of two main parts: the 
front-end and the back-end. The front-end mainly 
processes the environmental image data captured by the 
sensor through feature extraction and matching. It solves 
the epipolar geometry relationship between 
corresponding feature pixels to estimate camera 
translation and rotation parameters. On the other hand, 
the back-end involves nonlinear optimization, mapping 
estimation, and loop closure detection. Unlike previous 
methods using Kalman filtering, nonlinear optimization 
uses bundle adjustment (BA) to simultaneously optimize 
the six degrees of freedom of camera pose parameters and 
landmark pose in space.  

However, the detection accuracy of ORB-SLAM3 in 
dynamic environments is currently not high. This is 
because the BA method mentioned earlier in the back-end 
performs poorly in dynamic environments. When 
optimizing camera poses using the BA method, the 
detection accuracy depends on whether the feature points 
extracted from the environment detection images are 

static features. In practice, in dynamic scenes, it is worth 
discussing how feature-based SLAM algorithms and 
direct methods SLAM algorithms distinguish between 
dynamic features and static features. Mismatching 
dynamic features as static features may cause 
misalignment, and misalignment in the front-end will 
affect the accuracy of pose estimation in the back-end. 
Ultimately, this will result in a significant discrepancy 
between the system's estimated pose and the actual 
environment. 

3. Elimination of the dynamic points

3.1. Dynamic SLAM based on geometric methods 

There are two main methods to reduce the impact of 
dynamic features in visual SLAM in dynamic scenes 
based on geometric approaches. One method, based on 
traditional geometry, is proposed by Sun et al. [3] detect 
moving objects by comparing differences between 
consecutive frames; however, this technique suffers from 
limited real-time performance. Wang et al. [4] , utilizes 
Epipolar Geometry to filter matching feature points 
between adjacent frames and combines depth information 
obtained from RGB-D cameras to identify independent 
dynamic objects in the scene through clustering. 
However, this method requires the use of transformation 
matrices for pose estimation between adjacent frames, 
leading to a significant decrease in detection accuracy 
when multiple dynamic objects need to be detected in the 
environment. Another method proposed by Lin et al. [5] 
combines image depth information with visual ranging to 
detect the positions of moving objects in the scene. 
However, due to the uncertainty associated with depth 
information and the accumulation of errors when 
computing transformation matrices between consecutive 
frames, this method also compromises accuracy. 

The fundamental principle of these methods mentioned 
above is the calculation of dynamic features. Features 
based on dynamic objects deviate from the standard 
constraints observed in static scenes through 
triangulation, fundamental matrix estimation, epipolar 
line determination, and reprojection error analysis. 
During pose estimation, these dynamic features are 
treated as outliers. The correctness of feature matching 
depends on whether the extracted feature points violate 
the aforementioned constraints, thereby appropriately 
excluding dynamic points. However, it should be noted 
that the accuracy of this method largely depends on the 
proportion of static feature points present in the given 
scene. 

3.2. Dynamic SLAM based on deep learning 

Next, we will introduce another direction to solve this 
problem, which is to use deep learning to improve the 
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detection accuracy of visual slam systems in dynamic 
environments. There are already some methods that use 
deep learning to remove dynamic features. Berta Bescos 
et al. [6] proposed the DynaSLAM algorithm, which 
leverages Mask R-CNN (Region-based Convolutional 
Neural Network) to optimize ORB-SLAM2. By 
combining deep learning with geometry, DynaSLAM 
effectively filters out dynamic feature points in the scene. 
While this algorithm has demonstrated impressive 
performance on the TUM dataset, its reliance on Mask R-
CNN for pixel segmentation hampers real-time detection 
efficiency, limiting its applicability in real-world 
environments. Another approach called DDL-SLAM 
(Dynamic Deep Learning SLAM)  [7] employs DUNet 
(Deformable Unity Networking) and semantic masks 
obtained through multi-view geometry to detect dynamic 
objects and restore the obscured background using an 
image restoration strategy. However, due to pixel-level 
mask calculation, this method also falls short of achieving 
real-time performance. In contrast to Mask R-CNN, 
YOLOv5 (You Only Look Once Version 5) [8]. offers a 
more efficient object detection model that achieves 
detection speeds ranging from 45-155 frames per second 
(fps), surpassing Mask R-CNN's maximum speed of 5 fps 
by a factor of 9-30 times. Integrating YOLOv5's object 
detection results into dynamic visual SLAM algorithms 
could partially compensate for the low efficiency 
associated with Mask R-CNN usage. 

This study also follows the aforementioned research 
approach by integrating deep learning algorithms into the 
object detection thread of the ORB-SLAM3 algorithm. 
YOLOv5 object detection algorithm was selected for 
dynamic object recognition in dynamic environments. 
Additionally, a new module was added to the tracking 
thread of ORB-SLAM, which removes dynamic features 
that may affect recognition while sensors extract 
environmental information. Consequently, the backend 
can perform motion estimation without interference from 
dynamic objects, thereby improving the detection 
accuracy of ORB-SLAM3 in dynamic environments. The 
integrated algorithm flowchart is shown in Fig.1. 

4. Experimental verification and data analysis

4.1. Experimental construction and data set 

My experiment involved testing the optimized visual 
SLAM system proposed in this paper using video 
sequences from the TUM dataset. The experimental 
results were analyzed to evaluate the localization 
accuracy of the SLAM system. The experiments were 
conducted on the Ubuntu 20.04 operating system, with a 
12th Gen Intel(R) Core (TM) i9-12900H 2.50GHz CPU, 
an NVIDIA GeForce RTX 3060 GPU with 12GB of 
VRAM, and the PyTorch deep learning framework. The 

algorithm's performance was tested on the 
fr3_walking_xyz, fr3_walking_half, and 
fr3_walking_static dataset sequences. The 
fr3_walking_xyz dataset depicts two individuals walking 
and conversing in a fixed scene, with both the camera and 
people in motion, representing a high-dynamic scene. 
The fr3_walking_half dataset builds upon this by having 
the camera move along a semi-circular trajectory in the 
air. The fr3_walking_static dataset, on the other hand, 
features relatively stationary objects, representing a low-
dynamic scene. 

4.2. Visual SLAM front-end feature extraction effect 
after integrating YOLOv5 

After completing the algorithm integration, I compared 
the modified algorithm with the original one. The specific 
visualization results of the detection operation are shown 
in Fig. 2. From the figure, it is evident that integrating the 
object detection algorithm into the frontend of visual 
SLAM has achieved real-time and accurate detection of 
dynamic objects. Additionally, after removing some 
dynamic feature points, the system can detect more useful 
static feature points, which can better assist backend 
computation and improve detection accuracy.  

Fig.1 Algorithm framework 
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4.3. Experimental data indicator analysis 

The evaluation methods of SLAM systems can be 
summarized into two common parameters: Absolute 
Trajectory Error (ATE) and Relative Pose Error (RPE). 
ATE assesses the difference between the true trajectory 
and the estimated trajectory, while RPE calculates the 
pose differences within the same time interval, typically 
used for odometer error estimation. Afterward, both 
parameters need to be calculated for Root Mean Square 
Error (RMSE) to determine the overall error value. It can 
be observed from the definitions of these parameters that 
a lower RMSE value indicates a smaller error, implying 
a closer approximation to the true situation, thus 
reflecting the algorithm's stronger robustness and 
stability [9]. 

Following experiments conducted on different datasets, 
evaluations of various processes were computed. The 
comparison between the original algorithm and the 
integrated algorithm in terms of parameters is illustrated 
in Table 1 and Table 2.  

In the tables, the "xyz" and "half" datasets represent the 
parameter results in dynamic environments, while the 
"static" dataset represents the parameter results in static 
environments. It can be distinctly observed from the 
parameter comparison in the tables that the integrated 
algorithm proposed in this study not only maintains the 
detection accuracy of the original algorithm in static 
environments but also significantly improves the 
detection accuracy of visual SLAM systems in dynamic 
environments. 

a. Fusion algorithm

b. Original algorithm
Fig.2. Comparison of front-end feature extraction 

results before and after integrating YOLOv5 

Table.1 ATE performance comparison 

Table.2 RPE performance comparison 
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