
Corresponding author E-mail: onaga@earth.cs.miyazaki-u.ac.jp, kat@cs.miyazaki-u.ac.jp, kita@sun.ac.jp, yamaba@cs.miyazaki-u.ac.jp,
aburada@cs.miyazaki-u.ac.jp, oka@cs.miyazaki-u.ac.jp

336

Research Article

RAGESS: A Tool for Real-time Automatic Generation of
SwiftDiagram to Support iOS Application Development
Haruki Onaga1, Tetsuro Katayama1, Yoshihiro Kita2, Hisaaki Yamaba1, Kentaro Aburada1, Naonobu Okazaki1

1Department of Computer Science and Systems Engineering, Faculty of Engineering, University of Miyazaki, 1-1 Gakuen-kibanadai nishi, Miyazaki, 889-2192
Japan
2Department of Information Security, Faculty of Information Systems, Siebold Campus, University of Nagasak, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun,
Nagasaki, 851-2195 Japan

A R T I C L E IN FO
Article History

Received 24 November 2023
Accepted 19 June 2024

Keywords

Software visualization
Mobile application
iOS
Swift

ABSTR AC T
It is difficult for mobile application developers to understand the structure of large and complex
mobile applications. To support iOS application development, we proposed SwiftDiagram: a
visualization of the static structure of Swift source code, and demonstrated its usefulness. To
further support them, this paper has implemented RAGESS(Real-time Automatic Generation of
SwiftDiagram System), which is a software visualization tool. RAGESS performs static analysis
on Swift source code and automatically generates the corresponding SwiftDiagram whenever the
target project build succeeds.

© 2022 The Author. Published by Sugisaka Masanori at ALife Robotics Corporation Ltd.
This is an open access article distributed under the CC BY-NC 4.0 license
(http://creativecommons.org/licenses/by-nc/4.0/).

1. Introduction

The market for mobile applications targeting
smartphones and tablets is expanding every year [1]. As
a result, mobile applications are becoming larger and
more complex, driven by the demand for continuous
releases in short cycles [2]. In such development, the
following problems exist for mobile application
developers.

• Difficult to understand the overall structure of the
application by reading the source code

• Difficult to keep track of where changes made to
the source code may have an impact within the
project

We proposed SwiftDiagram to solve these problems
with a software visualization approach. SwiftDiagram is
a diagram that visualizes the static structure and impact
scope of source code written in Swift [3]. Swift is a
programming language used to develop iOS applications.
However, manually drawing a SwiftDiagram is labor-

intensive and error-prone. Therefore, to further support
iOS application developers, we develop a prototype tool
called RAGESS (Real-time Automatic Generation of
SwiftDiagram System). RAGESS monitors the
developer-selected project. When it detects that the
project’s build is successful, it performs static analysis on
the source code and generates the corresponding
SwiftDiagram. RAGESS immediately displays the
generated SwiftDiagram, categorized into protocols,
structures, classes, and enumerations.

2. SwiftDiagram

SwiftDiagram is a diagram that supports the design and
maintenance of iOS applications for source code written
in Swift. To achieve this, SwiftDiagram visualizes the
following:

• The static structural composition of types
• The impact range resulting from modifications

made to a type or its constituent elements

SUGISAKA
MASANORI

Journal of Robotics, Networking and Artificial
Life Vol. 10(4); March (2024), pp. 336–341

ISSN (Online): 2352-6386; ISSN (Print): 2405-9021
https://alife-robotics.org/jrnal.html

mailto:kita@sun.ac.jp
http://creativecommons.org/licenses/by-nc/4.0/
https://grp.isbn-international.org/search/piid_solr?keys=sugisaka
https://grp.isbn-international.org/search/piid_solr?keys=sugisaka

337

SwiftDiagram is constructed using four different kinds
of components and a single type of arrow, which are
explained the below. The components of SwiftDiagram
are shown in Fig. 1.

• Header Component
Shows a type identifier, such as access level, type
categories, and name

• Details Component
Shows the components of a type, such as variables,
functions, inheritance relationships, and so on

• Extension Component
Shows type extensions defined in extension code
blocks

• Nest Component
Shows types that are declared within the scope of
another type

• Impact Range(arrow)
Shows that changes to the type at root of the arrow
may impact the component of the other type of
destination of the arrow

3. Prototype of RAGESS

We implement RAGESS as an application running on
macOS using Swift and SwiftUI [4]. To use functions of
RAGESS, the mobile application developer selects the
project directory and the build file they want to
visualize .111with SwiftDiagram using the standard
macOS file selection dialog.

3.1. Appearance of RAGESS

Fig. 2 shows the appearance of RAGESS after it has
generated and displayed SwiftDiagram. The user
interface of RAGESS consists of the following
components:

• An area displaying the generated SwiftDiagram
• An area displaying the path of selected project and

the last change date and time

Fig.1 Component of SwiftDiagram

Fig.2 An appearance of RAGESS’s user interface, with descriptions of its main components

338

• A slide bar to control the magnification level of
the SwiftDiagram

• A slide bar to control the opacity of the arrows
• A button to make all arrows visible
• A button to select a directory of the target project
• A button to select a build file of the target project

3.2. Features of RAGESS

RAGESS has two primary features, which are as follows:

• Real-time automatic generation and display of the
SwiftDiagram corresponding to the latest source
code of the target project whenever its build
succeeds

• Display of the impact range of a single type

RAGESS keeps track of the build file of the target
project. Whenever RAGESS notices a change in the build
file, it conducts a static analysis of the project’s Swift
source code and automatically generate the
corresponding SwiftDiagram. This not only eliminates
the need for developers to manually update the
SwiftDiagram but also guarantees that the generated
SwiftDiagram does not contain syntax errors. The static
analysis of Swift source code is carried out using
SwiftSyntax [5], an open-source tool made available by
Apple. The developer can adjust the magnification level
of the displayed SwiftDiagram by operating the slide bar.

Representing the entire structure of the target project
in SwiftDiagram might result in complex arrows
depicting the impact range, potentially hindering the
developer’s understanding of the structure. When the
developer clicks on a header component of the
SwiftDiagram generated by RAGESS, it narrows down
the display to only the arrows representing the impact
range of changes made to that specific type. Furthermore,

the user can adjust the opacity of the arrows by using slide
bar. Clicking the “Show All Dependencies” button
reverts the impact range and arrow opacity to their initial
state, displaying all the arrows representing the impact
range for the entire project.

4. Application Example

As one of application examples, we verify that the
features of RAGESS works correctly for Swift source
code that defines multiple types. Fig. 3 shows the
correspondence between the SwiftDiagram generated by
RAGESS and the Swift source code in the example. Fig.
2 shows the screen of RAGESS when it monitors the
build file of the project containing the Swift source code
in the example and detects a successful build.

Comparing the SwiftDiagram and Swift source code in
Fig. 3, we can see that the structure name and properties
of StructA in the SwiftDiagram correspond to those in the
Swift source code. Likewise, for StructC, the structure
name, properties, and dependencies based on protocol
conformance in the SwiftDiagram align with their
counterparts in the Swift source code.

Additionally, in the SwiftDiagram, ProtocolA,
SuperClass, and StructB have arrows pointing to the
components of other types that could potentially be
impacted by modifications made to these types.

Furthermore, as another application example, we
verify that the RAGESS functionality works correctly for
a simplified Swift source code that represents a portion of
itself. Fig. 4 shows the simplified Swift source code for
the data objects in RAGESS that hold structures and
variables. Fig. 5 shows the screen after RAGESS
monitors the build file of the sample project containing

Fig.3 An example representing the correspondence between the SwiftDiagram and the Swift source code

339

the Swift source code from Fig. 4 and detects a successful
build.

Comparing the source code in Fig. 4 with the
SwiftDiagram in Fig. 5, the names of the types, variables,
and enumeration cases match respectively. In the source
code, the access levels for types and variables are omitted,
and the SwiftDiagram generated by RAGESS correctly
applies the default access level “internal”.

Moreover, the source code in Fig. 4 declares four
protocols, two structures, and two enumerations. Among
the protocols, Holder, AccessLevelRepresentable, and
Nameable are conformed to by both structures. In the
SwiftDiagram in Fig. 5, arrows are connected from each
of these three protocols to the “Conform” parts of the two
structures. The TypeRepresentable protocol is only
conformed to by the VariableHolder structure, and
correspondingly, in the SwiftDiagram in Fig. 5, an arrow
is connected only to the “Conform” part of
VariableHolder. Furthermore, the StructHolder structure
has a property with an array of VariableHolder structures
as its type. In the SwiftDiagram in Fig. 5, an arrow is
connected from the VariableHolder structure to the
property of the StructHolder structure. Similarly, the two
enumerations also have arrows connecting to the
properties for which they serve as types.

Therefore, it is clear that RAGESS can statically
analyze Swift source code and generate the
corresponding SwiftDiagram.

5. Related work

Another tool for visualizing Swift source code is Emerge
[6]. Emerge is a web-based tool that provides
visualizations of the codebase and dependencies for
various programming languages, such as Swift,
JavaScript, and Python. By visualizing the source code as
a graph structure consisting of nodes and edges, it enables
visual exploration and analysis.

Emerge examines source files in the specified
directory that are written in a developer-defined language
and produces file for rendering graphs in a web browser.
By loading these files in a web browser, developers can
analyze the dependencies. However, any modifications
made to the source code after the analysis are not
reflected in the graph displayed in the web browser.
Moreover, because Emerge represents types and files as
nodes, it is unable to analyze the dependencies at the level
of type components. On the other hand, RAGESS
automatically generates SwiftDiagram every time the
target project’s build is successful. Additionally, since
the arrows are linked to type components like properties
and methods, developers can gain a more comprehensive
understanding of the dependencies.

And another visualization tool targeting Swift is
Swiftcity [7], [8]. This tool adapts the city metaphor to
Swift’s unique features like type extensions and
structures, visualizing the source code as cities and
buildings. The height of each building corresponds to the
number of lines of code (LOC) in a type, while the width
and depth represent the number of methods.

However, Swiftcity doesn’t visualize components such
as properties and enumeration cases, or dependencies like
function calls and protocol conformance. On the other
hand, RAGESS can represent the scale of a type through
the combined height of the SwiftDiagram components
and visualize type components beyond just methods, as
well as the scope affected by changes.

Fig.4 RAGESS source code with simplified data objects
holding structures and variables

340

Therefore, RAGESS can visualize the structure of a
project in greater detail. Moreover, by updating the
SwiftDiagram in real-time every time the project build
succeeds, RAGESS reduces the effort required by
developers to modify the artifacts.

Therefore, RAGESS provides a more detailed
visualization of the target project structure than the other
two tools for visualizing Swift source code. Moreover, it
automatically updates the SwiftDiagram after each
successful build of the target project, reducing the amount
of time the developer has to modify the artifacts.

6. Conclusion

In this paper, we have developed a prototype of RAGESS,
a software visualization tool aimed at supporting iOS
application development. RAGESS performs static
analysis on source code written in the Swift programming
language and generates and displays a SwiftDiagram. By
monitoring the target project and detecting successful
builds, RAGESS automatically updates the
SwiftDiagram.

We applied RAGESS to two different examples of
Swift source code and confirmed that it can generate
SwiftDiagram corresponding to each example.

Additionally, we compared RAGESS with other tools
that apply software visualization approaches to Swift
source code. The results showed that RAGESS can
visualize that structure of a target project in more detail
and in real-time compared to the other tools.

Consequently, RAGESS has the potential to support
iOS application development using the Swift
programming language.

Future works include the following:

• Evaluation of the usefulness of RAGESS through
subject experiments involving experienced iOS
application developers

• Implementation of search feature
• Visualization at different levels of abstraction

References

1. Ministry of Internal Affairs and Communications,
Japan, Information and Communications in Japan
WHITE PAPER 2022,
https://www.soumu.go.jp/johotsusintokei/whitepaper
/eng/WP2022/2022-index.html

2. Ronald Jabangwe, Henry Edison, Anh Nguyen Duc.
Software engineering process models for mobile app
development: A systematic literature review. The

Fig.5 Screen after applying RAGESS to the source code in Fig.4

https://www.soumu.go.jp/johotsusintokei/whitepaper/eng/WP2022/2022-index.html
https://www.soumu.go.jp/johotsusintokei/whitepaper/eng/WP2022/2022-index.html
https://www.soumu.go.jp/johotsusintokei/whitepaper/eng/WP2022/2022-index.html
https://www.soumu.go.jp/johotsusintokei/whitepaper/eng/WP2022/2022-index.html
https://www.soumu.go.jp/johotsusintokei/whitepaper/eng/WP2022/2022-index.html
https://www.sciencedirect.com/science/article/pii/S0164121218301638
https://www.sciencedirect.com/science/article/pii/S0164121218301638
https://www.sciencedirect.com/science/article/pii/S0164121218301638

341

Journal of Systems & Software. 2018, 145, pp.98-
111.

3. Apple, Swift, https://developer.apple.com/document
ation/swift (Accessed 2024-6-13)

4. Apple, SwiftUI, https://developer.apple.com/docume
ntation/swiftui (Accessed 2024-6-13)

5. GitHub, swift-syntax, https://github.com/apple/swift-
syntax (Accessed 2023-12-14)

6. GitHub, emerge, https://github.com/glato/emerge
(Accessed 2023-12-14)

7. Rafael Nunes, Marcel Rebouc a̧s, Francisco Soares-
Neto, Fernando Castor. Poster: Visualizing Swift
Projects as Cities. IEEE/ACM 39th International
Conference on Software Engineering Companion.
2017, pp. 368-370.

8. Swiftcity, https://swiftcity.github.io/swiftcity-app/
(Accessed 2023-12-14)

Authors Introduction

Mr. Haruki Onaga
He received the Bachelor's degree in
engineering (computer science and
systems engineering) from the
University of Miyazaki, Japan in 2023.
He is currently a Master's student in
Graduate School of Engineering at the
University of Miyazaki, Japan. His
research interests include software

development support through software

Dr. Tetsuro Katayama
He received a Ph.D. degree in
engineering from Kyushu University,
Fukuoka, Japan, in 1996. From 1996 to
2000, he has been a Research Associate at
the Graduate School of Information
Science, Nara Institute of Science and
Technology, Japan. Since 2000 he has
been an Associate Professor at the

Faculty of Engineering, Miyazaki University, Japan. He is
currently a Professor with the Faculty of Engineering,
University of Miyazaki, Japan. His research interests
include software testing and quality. He is a member of the
IPSJ, IEICE, and JSSST.

Dr. Yoshihiro Kita
He received a Ph.D. degree in systems
engineering from the University of
Miyazaki, Japan, in 2011. He is
currently an Associate Professor with the
Faculty of Information Systems,
University of Nagasaki, Japan. His
research interests include software
testing and biometrics authentication.

Dr. Hisaaki Yamaba
He received the B.S. and M.S. degrees in
chemical engineering from the Tokyo
Institute of Technology, Japan, in 1988
and 1990, respectively, and the Ph D.
degree in systems engineering from the
University of Miyazaki, Japan in 2011. He
is currently an Assistant Professor with
the Faculty of Engineering, University of

Miyazaki, Japan. His research interests include network
security and user authentication. He is a member of SICE
and SCEJ.

Dr. Kentaro Aburada
He received the B.S., M.S, and Ph.D.
degrees in computer science and system
engineering from the University of
Miyazaki, Japan, in 2003, 2005, and 2009,
respectively. He is currently an Associate
Professor with the Faculty of Engineering,
University of Miyazaki, Japan. His

research interests include computer networks and security.
He is a member of IPSJ and IEICE.

Dr. Naonobu Okazaki
He received his B.S, M.S., and Ph.D.
degrees in electrical and
communication engineering from
Tohoku University, Japan, in 1986,
1988 and 1992, respectively. He joined
the Information Technology Research
and Development Center, Mitsubishi
Electric Corporation in 1991. He is
currently a Professor with the Faculty of
Engineering, University of Miyazaki

since 2002. His research interests include mobile network
and network security. He is a member of IPSJ, IEICE and
IEEE.

https://www.sciencedirect.com/science/article/pii/S0164121218301638
https://www.sciencedirect.com/science/article/pii/S0164121218301638
https://developer.apple.com/documentation/swift
https://developer.apple.com/documentation/swift
https://developer.apple.com/documentation/swiftui/
https://developer.apple.com/documentation/swiftui/
https://github.com/apple/swift-syntax
https://github.com/apple/swift-syntax
https://github.com/glato/emerge
https://github.com/glato/emerge
https://ieeexplore.ieee.org/document/7965361
https://ieeexplore.ieee.org/document/7965361
https://ieeexplore.ieee.org/document/7965361
https://ieeexplore.ieee.org/document/7965361
https://ieeexplore.ieee.org/document/7965361
https://swiftcity.github.io/swiftcity-app/
https://swiftcity.github.io/swiftcity-app/

	ARTICLE INFO
	1. Introduction
	2. SwiftDiagram
	3. Prototype of RAGESS
	3.1. Appearance of RAGESS
	3.2. Features of RAGESS

	4. Application Example
	5. Related work
	6. Conclusion
	References

