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Abstract 

Blum and Hewitt first proposed two-dimensional automata as computational models of two-dimensional pattern 
processing－two-dimensional finite automata and marker automata, and investigated their pattern recognition 
abilities in 1967. Since then, many researchers in this field have investigated the properties of automata on two- or 
three-dimensional tapes. On the other hand, the question of whether or not processing four-dimensional digital 
patterns is more difficult than processing two- or three-dimensional ones is of great interest from both theoretical 
and practical standpoints. Thus, the study of four-dimensional automata as the computational models of 
four-dimensional pattern processing has been meaningful. From this point of view, we are interested in 
four-dimensional computational models, In this paper, we introduce a new four-dimensional computational model, 
k-neighborhood template A-type three-dimensional bounded cellular acceptor on four-dimensional input tapes, and 
investigate about hierarchy based on configuration-reader about this model. 

Keywords: cellular acceptor, configuration-reader, converter, finite automaton, four-dimension, on-line tessellation 
acceptor, parallel/sequential array acceptor, Turing machine 

1. Introduction and Preliminaries 

In 2002, we first introduced a four-dimensional 
automaton, and investigated some properties [4]. In 
general, in the multi-dimensional pattern processing, 
designers often use a strategy whereby features are 
extracted by projecting high-dimensional space on 
low-dimensional space. In this paper, from this 
viewpoint, we introduce a new computational model, 

k-neighborhood template A-type three-dimensional 
bounded cellular acceptor (abbreviated as A-3BCA(k)) 
on four-dimensional tapes, and discuss some basic 
properties. An A-3BCA(k) consists of a pair of a 
converter and a configuration-reader. The former 
converts the given four-dimensional tape to the 
three-dimensional configuration and the latter 
determines the acceptance or nonacceptance of given 
four-dimensional tape whether or not the derived 
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Proof: It is easily seen that there exists a 
nondeterministic three-dimensional finite automaton 
accepting the set of three-dimensional tapes which are 
obtained by extracting the bottom plane from the tape 
contained in T1. Therefore, (1) holds. On the other hand, 
the proof of (2) is similar to that of Lemma 2(2) in [7].  

□ 
 
Lemma 2. Let T2 = {x ∈ {0,1}(4) |  ∃n ≥ 1 [l1(x) = l2(x) 
= l3(x) = l4(x) = 2n & x[(1,1,2n,2n), (2n,n,2n,2n)] = 
x[(1,n+1,2n,2n), (2n,2n,2n,2n)]]}. Then, (1) T2 ∈ L 
[DOP-3DBCA(1)], and (2) T2 ∉ L [NO- 3DBCA(27)]. 
 
Proof: (1) Note that there exists a deterministic 
one-way 
parallel sequential array acceptor accepting the set of 
two-dimensional tapes obtained by extracting the 
bottom plane of the first cube from the tape contained in 
T2. It is easily seen from this fact that (1) holds. (2) The 
proof is similar to that of Lemma 2(2). Suppose that 
there exists an NO-3DBCA(27) M = (R, B) accepting T2, 
where R is a converter and B is a configuration-reader. 
Let K be the set of each cell of B ∈ NO, and |K| = s. 
For each n ≥ 1, let V (n)={ x∈{0,1}(4)| l1(x) = l2(x) = l3(x) 
= l4(x) = 2n & x[(1,1,1,1), (2n,2n,2n,2n-1)] ∈ {0}(4), 
V’(n) = V (n) ⋂ T2, W(n) = {w ∈ K(2) | l1(w) = 2n & 
l2(w) = 1 } (K(2) means the set of all two-dimensional 
tapes over Σ .). For each x ∈ V (n), let ߩ(x) ≡ the 
configuration of R just after reading x, ߩௐ(x) = the west 
half of ߩ (x), and ߩா (x)  ≡ the east half of ߩ (x). 
Further, for each x ∈ V’(n), let Run(x) = {z ∈ K(2) | z is 
a run of B on ߩ(x) whose lower right corner symbol is 
an accepting state of B.} and r(x) = {z[(1,n),(2n,n)] | z ∈ 
Run(x) } ⊆W(n). Then, the following proposition must 
hold.  
 
Proposition 1. For any two different tapes x and y in 
V’(n), r(x) ⋂ r(y) = ϕ. 
 
[Proof: The proof is similar to that of Proposition 4 in 
[8].  

□]  
 
Proof of Lemma 2 (continued): As is easily seen,  

|V’(n)| = 2ଶ௡
మ
 and |W(n)| ≤ s2n 

Therefore, it follows for large n that |V’(n)| > |W(n)|. 
Consequently, it follows for such large n that there must 

be two different tapes x and y in V’(n) such that r(x) ⋂ 
r(y) ≠ ϕ. This contradicts Proposition 1.           □  
 
Lemma 3. Let T3 = {x∈{0,1}(4)|	∃n ≥ 1 [l1(x) = l2(x) = 
l3(x) = l4(x) = 2n & x[(1,1,2n,2n), (n,2n,2n,2n)] = 
x[(n+1,1,2n,2n), (2n,2n,2n,2n)]]}. Then, 
(1)T3 ∈ L[DP-3DBCA(1)], and (2) 
T3∉L[NOP-3DBCA(27)]. 
 
Proof: (1) Note that there exists a deterministic 
four-way parallel sequential array acceptor accepting 
the set of three-dimensional tapes which are obtained by 
extracting the bottom plane of the last cube from the 
tape contained in T3. It is easily seen, from this fact, that 
(1) holds. 
(2) Suppose that there exists an NOP-3DBCA(27) M = 
(R,B) accepting T3. Let s be the number of states of each 
cell of B ∈ NOP. For each n ≥ 1, let V (n) = 
{x∈{0,1}(4)|	∃n ≥ 1 [l1(x) = l2(x) = l3(x) = l4(x) = 2n & 
x[(1,1,1,1), (2n,2n,2n,2n-1)]	∈{0}(4)]}, V’(n) = V (n) ⋂ 
T3. For each x 	∈ V(n), let	ߩ(x) ≡ the configuration of R 
just after reading x, ߩே(x) ≡ the north half of ߩ(x), and 
 Furthermore, for each .(x)ߩ ே(x) ≡  the south half ofߩ
x ∈  V’(n), let conf(x) ≡ the set of possible 
configuration of B just after ߩே(x) is read, when ߩ(x) is 
accepted by B. (Note that ߩ(x) is accepted by B since 
each tape in V’(n) is accepted by M.) Then, the 
following two propositions must hold. (The proofs are 
omitted here. If necessary, see proofs of Lemmas 7 and 
8 in [6].) 
 
Proposition 2. (i) For any two tapes x and y in V’(n) 
such that their [(1, 1, 2n, 2n), (n, 2n, 2n,2n)]-segments 
are identical, ߩே(x) = ߩே(y), and (ii) For any two tapes 
x and y in V’(n) such that their [(n + 1, 1, 2n, 2n), (2n, 
2n, 2n, 2n)]-segments are identical, ߩௌ(x) = ߩௌ(y).  
 
Proposition 3. For any two different tapes x and y in 
V’(n), conf(x)	⋂ conf(y) = ϕ. 
 
Proof of Lemma 3 (continued): As is easily seen, 
 

|V’(n)| = 2ଶ௡
మ
 

 
Let t(n) be the total number of different configurations 

of R just after reading north halves of configurations of 
R just after reading tapes in V’(n). Clearly,  
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t(n) ≤ s2n 

 
Therefore, it follows for large n that 
 

|V’(n)| > t(n) 
 
Consequently, it follows for such large n that there 

must be two different tapes x and y in V’(n) such that 
conf(x)	⋂ conf(y) ≠ ϕ. This contradicts Proposition 3.         
□ 
 

Lemma 4. Let T4 be the set of three-dimensional tapes 
described in Lemma 1 in [7]. Then, (1) T4 
∈[NB-3DBCA(1)], and (2) T4 ∉ L [DOP-3DBCA(27)].  
 
Proof: (1) It is easily seen that there exists a 
nondeterministic one-dimensional bounded cellular 
automaton accepting the set of three-dimensional tapes 
which are obtained by attracting the bottom plane from 
the tape contained in T4. Therefore, (1) holds. On the 
other hand, the proof of (2) is shown Lemma 1 in [7]. 
□ 
 
Lemma 5. Let T5 = {x∈{0,1}(4) | ∃n ≥ 1 [l1(x) = l2(x) = 
l3(x) = l4(x) = 2n & [x(1,1,2n,2n), (n,n,2n,2n)]≠ 
x[(n+1,n+1,2n,2n),(2n,2n,2n,2n)]]}. Then, (1) T5 ∈L 
[NB-3DBCA(1)], and (2) T5 ∉ L [NA-3DBCA(27)]. 
 
Proof: (1) It is easily seen that there exists a 
nondeterministic one-dimensional bounded cellular 
automaton accepting the set of three-dimensional tapes 
which are obtained by extracting the bottom plane from 
the tape contained in T5. Therefore, (1) holds. On the 
other hand, the proof of (2) is similar to that of Lemma 
2 in [7].                                      
□ 
 

From the foregoing lemmas, we can obtain the 
following theorem when the converter is deterministic.  
 
Theorem 1. For each k ∈ {1, 7, 27}, 
 
(1) L [DA-3DBCA(k)] ⊊ L [NA-3DBCA(k)] ⊊ 

L [NB-3DBCA(k)] = L [NO-3DBCA(k)] ⊊ 
L [NOP-3DBCA(k)] ⊊ L [NP-3DBCA(k)] 

(2) L [DB-3DBCA(k)] ⊊	L [NB-3DBCA(k)], 

(3) L [DO-3DBCA(k)] ⊊	L [NO-3DBCA(k)], 
(4) L [DB-3DBCA(k)] ⊊	L [DOP-3DBCA(k)] ⊊ 

L [DP-3DBCA(k)], and 
(5) L [DO-3DBCA(k)] ⊊	L [DOP-3DBCA(k)] ⊊	 

L [NOP-3DBCA(k)]. 
 
Proof: It is clear from Proposition 1 in [7] that the 
inclusion relations hold. Therefore, below, we show that 
the proper inclusion relations held for each k ∈ {1, 7, 
27}. 

(1): It is obvious from Proposition l in [7] that L 
[NB-3DBCA(k)] = L [NO-3DBCA(k)]. From Lemma1, L 
[DA-3DBCA(k)] ⊊ L [NB-3DBCA(k)] holds, and from 
Lemma 5, L [NB-3DBCA(k)]⊊L [NB-3DBCA(k)] holds. 
In addition, it is obvious from Proposition 1 in [7] that L 
[DOP-3DBCA(k)] ⊆  L [NP-3DBCA(k)]. It follows 
from this and Lemma 2 that L [NO-3DBCA(k)] ⊊ L 
[NOP-3DBCA(k)] holds. Further, it is also obvious from 
Proposition 1 in [7] that L [DP-3DBCA(k)] ⊆  L 
[NP-3DBCA(k)]. It follows from this and Lemma 3 that 
L [NOP-3DBCA(k)] ⊊ L [NP-3DBCA(k)] holds. 
(2) and (3) : These are easily proved from Lemma 4 and 
Proposition 1 in [7]. 
(4) and (5) : These are also easily proved from Lemmas 
4,5,6 and Proposition 1 in [7].                   □ 
 

Next, we investigate the case when the converter is 
nondeterministic. 
 
Lemma 6. For each k ∈ {1, 7, 27},  
(1) L [NO-3NBCA(k)] ⊆ L [DA-3NBCA(k)], 
(2) L [NO-3NBCA(k)]	⊆ L [DB-3NBCA(k)], and  
(3) L [NO-3NBCA(k)] ⊆ L [DO-3NBCA(k)]. 
 
Proof: (1) We prove only L [NO-3NBCA(1)] (The other 
cases are proved similarly.) Let M= (R, B) be an 
arbitrary NO-3NBCA(1), and let KR and KB be the set of 
states of R and B, respectively. Further, let M’ = (R’, B’) 
be a DO-3NBCA(1) which acts as follows for a given 
four-dimensional tape x with each sidelength is n (n ≥ 
1).  
(i) Actions of the converter R’  

At each time, each (i, j, k, l)-voxel (1 ≤ i, j , k, l, ≤ n) 
of R’ simulates the action of the corresponding voxel of 
R on x at the same time. In parallel to this action, the 
voxel selects nondeterministically a state in KB (we let 
q(i, j, k, l) be the state) and stores the state in its state, 
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when the voxel reads a symbol on the top plane of the 
first cube of x. Here, q(i,j,k,l) is a guessed state of B 
which the (i, j, k, l)-voxel of B will enter by reading the 
configuration of R just after reading x; q(i, j, k, l) will 
have been stored in the state of the voxel until x is 
completed to read. 
(ii) Actions of the configuration reader B’ 
For each i, j, k, l(1 ≤ i, j, k, l ≤ n), let q(i, j, k, l) be a 
state in KR which the (i, j, k, l)-voxel of R’ continues to 
simulate the action of corresponding voxel of R and 
enters. B’ accepts a configuration of R’ just after reading 
x if and only if the following two conditions are 
satisfied. 

1 ⃝	For each i, j, k, l(1 ≤ i, j, k, l ≤ n), the (i, j, k, l)- 
voxel can enter q(i, j, k, l) when it reads (i, j, k, l). 

2 ⃝	q(n,n,n,n) is an accepting state of B. 
It is easily seen that T(M’) = T(M) for M = (R’,B’). 
This completes the proof of the lemma.            
□ 
 

From Lemma 6 and from Proposition 1 in [7], we can 
obtain directly the following theorem when the 
converter is nondeterministic.(The proof is omittied 
here.) It is of great interest to compare the following 
Theorem 2 with Theorem 1 mentioned for the 
deterministic case.  
 
Theorem 2. For each k ∈  {1, 7, 27}, L 
[DA-3NBCA(k)] 
= L [NA-3NBCA(k)] = L [DB-3NBCA(k)] = L 
[NB-3NBCA(k)] = L [DO-3NBCA(k)] = L 
[NO-3NBCA(k)]. 

3. Conclusions 

In this paper, we investigated how the difference of 
the configuration-reader affects the accepting powers of 
k-neighborhood template A-type three-dimensional 
bounded cellular acceptor(abbreviated as A-3BCA(k)). 
As the results, we showed that when the 
configuration-reader is deterministic, the A-3BCA(k) 
which is the converter is nondeterministic is more 
powerful than the A-3BCA(k) which is the converter is 
deterministic. However, this tendency is not always true 
when the configuration-reader is nondeterministic.  
We conclude this paper by giving a few open 

problems. 

(1) Accepting powers in the case of alternating version 
of 
configuration-reader. 
(2) Closure properties of A-3BCA(k). 
(3) Recognizability of topological four-dimensional 
input tapes by A-3BCA(k). 
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