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Abstract

Blum and Hewitt first proposed two-dimensional automata as computational models of two-dimensional pattern
processing —two-dimensional finite automata and marker automata, and investigated their pattern recognition
abilities in 1967. Since then, many researchers in this field have investigated the properties of automata on two- or
three-dimensional tapes. On the other hand, the question of whether or not processing four-dimensional digital
patterns is more difficult than processing two- or three-dimensional ones is of great interest from both theoretical
and practical standpoints. Thus, the study of four-dimensional automata as the computational models of
four-dimensional pattern processing has been meaningful. From this point of view, we are interested in
four-dimensional computational models, In this paper, we introduce a new four-dimensional computational model,
k-neighborhood template A-type three-dimensional bounded cellular acceptor on four-dimensional input tapes, and
investigate about hierarchy based on configuration-reader about this model.

Keywords: cellular acceptor, configuration-reader, converter, finite automaton, four-dimension, on-line tessellation
acceptor, parallel/sequential array acceptor, Turing machine

k-neighborhood template A-type three-dimensional
bounded cellular acceptor (abbreviated as A-3BCA(k))

1. Introduction and Preliminaries

In 2002, we first introduced a four-dimensional on four-dimensional tapes, and discuss some basic
automaton, and investigated some properties [4]. In properties. An A-3BCA(k) consists of a pair of a
general, in the multi-dimensional pattern processing, converter and a configuration-reader. The former
designers often use a strategy whereby features are converts the given four-dimensional tape to the
extracted by projecting high-dimensional space on three-dimensional  configuration and the latter
low-dimensional = space. In this paper, from this determines the acceptance or nonacceptance of given
viewpoint, we introduce a new computational model, four-dimensional tape whether or not the derived
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three-dimensional configuration is accepted. When a
four-dimensional input tape is presented to the
A-3BCA(k), a three-dimensional cellular automaton as
the converter first reads it to the future direction at unit
speed (i.e., one three-dimensional rectangular array per
unit time). From this process, the four-dimensional tape
is converted to a configuration of the converter which is
a state matrix of a three-dimensional cellular automaton.
Second, three-dimensional automaton as  the
configuration-reader, reads the configuration and
determines its acceptance. We say that a
four-dimensional input tape is accepted by the
A-3BCA(k) if and only if the configuration is accepted
by the configuration-reader. Therefore, the accepting
power of the A-3BCA(k) depends on how to combine
the converter and the configuration-reader. An
A-3DBCA(k) (A-3NBCA(k)) is called a k-neighborhood
template  A-type three-dimensional deterministic
bounded cellular acceptor (k-neighborhood template
A-type three-dimensional nondeterministic bounded
cellular acceptor). A DA[1] (NA, DB[5], NB, DO|2],
NO, DOP[3], NOP, DP[3], NP, DTM[4], NTM) is called
a three-dimensional deterministic finite automaton
(three-dimensional nondeterministic finite automaton,
deterministic  three-dimensional bounded cellular
acceptor, nondeterministic three-dimensional bounded
cellular acceptor, three-dimensional deterministic
on-line  tessellation  acceptor, three-dimensional
nondeterministic ~ online  tessellation  acceptor,
deterministic  three-way  parallel/sequential  array
acceptor, nondeterministic three-way parallel/sequential
array acceptor, deterministic
parallel/sequential array acceptor, nondeterministic
four-way parallel/sequential array acceptor,
three-dimensional ~ deterministic =~ Turing machine,
three-dimensional nondeterministic Turing machine).
Let 7(M) be the set of four-dimensional tapes accepted
by a machine M, and let £ [A-3DBCA(k)] ={T|T=T(M)
for some A-3DBCA(k) M}. £ [A-3NBCA(k)], etc. are
defined in the same way as £ [A-3DBCA(k)].

Let 2 be a finite set of symbols. A four-dimensional
tape over X is a four-dimensional rectangular array of
elements of 2. The set of all four-dimensional tapes
over is denoted by . Given a tape x € =, for each
integer j(1 <j < 4), we let /(x) be the length of x along
the jth axis. The set of all x € 2 with /,(x) = n,, L(x)
= ny, l(x) = n3, and [4(x) = ny4 is denoted by I+,

four-way

When 1 <i; < [(x) for each j(1 <j < 4), let x(i\, i, i3, i)
denote the symbol in x with coordinates (i), i, i3, is), as
shown in Fig.1. Furthermore, we define x[ (71, i, i3, is),
(i, 1%, i3, i’4)], whenl <i; <i’; < [{(x) for each integer
j(1 £ j < 4), as the four-dimensional input tape y
satisfying the following conditions:

(i) foreachj(1<;<4), [[(y)=i;-i+1;

(ii) for each ry, 1y, 13, r4(1 <1y < L(y), 1 <y < h(y),

1 <rs <L), 1 1y 1Y), Wy, 12, 13, 74) = x(r + 01 <
Ln+b<l,m+i3<1,rytiy-1). (Wecall x[(iy, i, i3,
i), (i, i%, i3, i')] the [(i1, iy, B3, ia), ("1, i, i3,
i’y)]-segment of x.)

We let each sidelength of each input tape of these

automata be equivalent in order to increase the
theoretical interest.

wify ix)dyix
-

is)

Fig. 1:Four-dimensional Input Tape.

2. Main Result

This section investigates how the difference of
configuration-reader affects the accepting powers of
A-3BCA(k)’s. First, we start to investigate the case
when the converter is deterministic.

Lemma 1. Let T} = {x€{0,1,2}¥|3n > 1 [L}(x) = L(x) =
L(x)=L(x)=n+1 & Fi(1<i<n)[x(i,nt1lntlnt+l)=2 &
(each  symbol on the remaining parts is
“0”0r“1”)&x[(i,1,n+1,n+1),(i,n,n+1,n+1)[#x[(n+1,1,n+1
atl),  (mtlpntlntD]]]}.  Then, (1) T, € £
[NA-3DBCA(1)], and (2) T\ & L[DA-3DBCA(27)].
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Proof: It is easily seen that there exists a
nondeterministic three-dimensional finite automaton
accepting the set of three-dimensional tapes which are
obtained by extracting the bottom plane from the tape
contained in 7. Therefore, (1) holds. On the other hand,
the proof of (2) is similar to that of Lemma 2(2) in [7].

O

Lemma?2. Let T, = {x € {0,1}¥| 3In>1[}(x)=1x)
= Lx) = Lx) = 2n & x[(1,1,2n,2n), (2n,n,2n,2n)] =
x[(1,n+1,2n,2n), (2n,2n2n2n)]1}. Then, (1) T, €L
[DOP-3DBCA(1)], and (2) T, & L[NO-3DBCA(27)].

Proof: (1) Note that there exists a deterministic
one-way

parallel sequential array acceptor accepting the set of
two-dimensional tapes obtained by extracting the
bottom plane of the first cube from the tape contained in
T5. It is easily seen from this fact that (1) holds. (2) The
proof is similar to that of Lemma 2(2). Suppose that
there exists an NO-3DBCA(27) M = (R, B) accepting 7>,
where R is a converter and B is a configuration-reader.
Let K be the set of each cell of B € NO, and |K| = s.
For each n > 1, let V (n)={ x€{0,1}¥| [,(x) = L,(x) = L1(x)
= L(x) = 2n & x[(1,1,1,1), (2n,2n,2n,2n-1)] € {0},
Vin)y=V @) N Th, Wn) = {w € K?| [(w)=2n &
hLw)y=11} (K® means the set of all two-dimensional
tapes over 2 .). For each x € V (n), let p(x) = the
configuration of R just after reading x, py,(x) = the west
half of p(x), and pg(x) = the east half of p(x).
Further, for eachx € 7’(n), let Run(x) = {z € K |z is
a run of B on p(x) whose lower right corner symbol is
an accepting state of B.} and r(x) = {z[(1,n),(2n,n)] |z €
Run(x) } SW(n). Then, the following proposition must
hold.

Proposition 1. For any two different tapes x and y in

V'(n), r(x) N r(y)=4.

[Proof: The proof is similar to that of Proposition 4 in
[8].
U]

Proof of Lemma 2 (continued): As is easily seen,

\V'(n)| = 22" and [W(n)| <5
Therefore, it follows for large n that |V'(n)| > |W(n)|.
Consequently, it follows for such large » that there must

Hierarchy Based on Configuration

be two different tapes x and y in V’(n) such that (x) N
r(y) # ¢. This contradicts Proposition 1. Ul

Lemma 3. Let Ty = {x€{0,1}*¥|3n > 1 [L,(x) = L(x) =
Lx) = Lx) = 2n & x[(1,1,2n,2n), (n,2n,2n,.2n)] =
x[(n+1,1,2n,2n), (2n,2n,2n,2n)]]}. Then,
HT; € L[DP-3DBCA(1)], 2)
T5&L[NOP-3DBCA(27)].

and

Proof: (1) Note that there exists a deterministic
four-way parallel sequential array acceptor accepting
the set of three-dimensional tapes which are obtained by
extracting the bottom plane of the last cube from the
tape contained in 73. It is easily seen, from this fact, that
(1) holds.

(2) Suppose that there exists an NOP-3DBCA(27) M =
(R,B) accepting T5. Let s be the number of states of each
cell of BENOP. For each n > 1, let V (n) =
(x€{0,13Y3n > 1 [I1(x) = b(x) = L(x) = LXx) =2n &
x[(1,1,1,1), 2n,2n,2n,2n-1)] €{0}P1}, V() = V (n) N
T;. For each x € W(n), let p(x) = the configuration of R
just after reading x, py(x) = the north half of p(x), and
pn(x) = the south half of p(x). Furthermore, for each
x € V’(n), let conf(x) = the set of possible
configuration of B just after py(x) is read, when p(x) is
accepted by B. (Note that p(x) is accepted by B since
each tape in J’(n) is accepted by M.) Then, the
following two propositions must hold. (The proofs are
omitted here. If necessary, see proofs of Lemmas 7 and
8in [6].)

Proposition 2. (i) For any two tapes x and y in V’(n)
such that their [(1, 1, 2n, 2n), (n, 2n, 2n,2n)]-segments
are identical, py(x) = py(), and (ii) For any two tapes
x and y in V'(n) such that their [(n + 1, 1, 2n, 2n), (2n,
2n, 2n, 2n)]-segments are identical, ps(x)= ps(y).

Proposition 3. For any two different tapes x and y in
V?(n), conf(x) N conf(y) = ¢.

Proof of Lemma 3 (continued): As is easily seen,
V()| = 22"
Let #(n) be the total number of different configurations

of R just after reading north halves of configurations of
R just after reading tapes in V’(n). Clearly,

Published by Atlantis Press
Copyright: the authors

82



M. Sakamoto, M. Nagatomo, T. Zhang, X.Feng, T. Kurogi, S. Ikeda, M. Yokomichi, H. Furutani, T. Ito, Y. Uchida and T. Yoshinaga

t(n) < s>
Therefore, it follows for large n that
[V ()| > t(n)

Consequently, it follows for such large n that there
must be two different tapes x and y in V’(n) such that
conf(x) N conf(y) # ¢. This contradicts Proposition 3.
O

Lemma 4. Let Ty be the set of three-dimensional tapes
described in Lemma 1 in [7]. Then, (1) T4
€[NB-3DBCA(1)], and (2) Ty € L[DOP-3DBCA(27)].

Proof: (1) It is easily seen that there exists a
nondeterministic one-dimensional bounded cellular
automaton accepting the set of three-dimensional tapes
which are obtained by attracting the bottom plane from
the tape contained in 74. Therefore, (1) holds. On the
other hand, the proof of (2) is shown Lemma 1 in [7].
U

Lemma 5. Let Ts = {x€{0,1}¥ | 3n>1 [/,(x) = L(x) =
Lx) = Lx) = 2n & [x(1,1,2n,2n), (nn,2n2n)]#
x[(n+1,n+1,2n,2n),(2n,2n,2n,2n)11}. Then, (1) Ts €L
[NB-3DBCA(1)], and (2) Ts & L[NA-3DBCA(27)].

Proof: (1) Tt is easily seen that there exists a
nondeterministic one-dimensional bounded cellular
automaton accepting the set of three-dimensional tapes
which are obtained by extracting the bottom plane from
the tape contained in 75. Therefore, (1) holds. On the
other hand, the proof of (2) is similar to that of Lemma
2 in [7].
O

From the foregoing lemmas, we can obtain the
following theorem when the converter is deterministic.

Theorem 1. For each k € {1,7,27},

(1) £[DA-3DBCA(K)] & £ [NA-3DBCA(K)] &
£ [NB-3DBCA(k)] = £ [NO-3DBCA(K)] €
L [NOP-3DBCA(k)] & £ [NP-3DBCA(K)]

(2) £ [DB-3DBCA(K)] & £ [NB-3DBCA(k)],

(3) L£[DO-3DBCA(k)] S L [NO-3DBCA(k)],

(4) £[DB-3DBCA(k)] & £L[DOP-3DBCA(k)]
L[DP-3DBCA(k)], and

(5) L[DO-3DBCA(k)] S L [DOP-3DBCA(k)] &
L [NOP-3DBCA(k)].

in

Proof: It is clear from Proposition 1 in [7] that the
inclusion relations hold. Therefore, below, we show that
the proper inclusion relations held for each £ € {1, 7,
27%.

(1): It is obvious from Proposition 1 in [7] that £
[NB-3DBCA(k)] = £ [NO-3DBCA(k)]. From Lemmal, £
[DA-3DBCA(k)] & L [NB-3DBCA(k)] holds, and from
Lemma 5, £ [NB-3DBCA(k)]SL [NB-3DBCA(k)] holds.
In addition, it is obvious from Proposition 1 in [7] that £
[DOP-3DBCA(k)] S £ [NP-3DBCA(k)]. It follows
from this and Lemma 2 that £ [NO-3DBCA(k)] & £
[NOP-3DBCA(k)] holds. Further, it is also obvious from
Proposition 1 in [7] that £ [DP-3DBCA(k)] € £
[NP-3DBCA(k)]. It follows from this and Lemma 3 that
L[NOP-3DBCA(k)] & L[NP-3DBCA(k)] holds.

(2) and (3) : These are easily proved from Lemma 4 and
Proposition 1 in [7].

(4) and (5) : These are also easily proved from Lemmas
4,5,6 and Proposition 1 in [7]. Ul

Next, we investigate the case when the converter is
nondeterministic.

Lemma6. Foreachk € {1,7,27},

(1) £[NO-3NBCA(k)] € L[DA-3NBCA(k)],

(2) L[NO-3NBCA(k)] € L[DB-3NBCA(k)], and
(3) L[NO-3NBCA(k)] € L[DO-3NBCA(k)].

Proof: (1) We prove only £ [NO-3NBCA(1)] (The other
cases are proved similarly.) Let M= (R, B) be an
arbitrary NO-3NBCA(1), and let K and K3 be the set of
states of R and B, respectively. Further, let M’ = (R’, B’)
be a DO-3NBCA(1) which acts as follows for a given
four-dimensional tape x with each sidelength is n (n >
D).

(i) Actions of the converter R’

At each time, each (i, j, k, [)-voxel (1 <4i,j, k I, <n)
of R’ simulates the action of the corresponding voxel of
R on x at the same time. In parallel to this action, the
voxel selects nondeterministically a state in Kg (we let
q(i, j, k, I) be the state) and stores the state in its state,
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when the voxel reads a symbol on the top plane of the
first cube of x. Here, q(i,j,k /) is a guessed state of B
which the (i, j, k, [)-voxel of B will enter by reading the
configuration of R just after reading x; ¢g(i, j, k, ) will
have been stored in the state of the voxel until x is
completed to read.
(ii) Actions of the configuration reader B’
Foreach i, j, k I(1 <i,j, k [ <n),letq(i j, k [) be a
state in K which the (i, j, &, /)-voxel of R’ continues to
simulate the action of corresponding voxel of R and
enters. B’ accepts a configuration of R’ just after reading
x if and only if the following two conditions are
satisfied.

@ For each i, j, k, I(1 <i, j, k [ <n), the (i, j, k I)-
voxel can enter q(i, j, k, /) when it reads (i, J, &, ).

@ g(n,n,n,n) is an accepting state of B.
It is easily seen that T(M”) = T(M) for M = (R’,B’).
This completes the proof of the
Il

lemma.

From Lemma 6 and from Proposition 1 in [7], we can
obtain directly the following theorem when the
converter is nondeterministic.(The proof is omittied
here.) It is of great interest to compare the following
Theorem 2 with Theorem 1 mentioned for the
deterministic case.

Theorem 2. For
[DA-3NBCA(k)]

= L [NA-3NBCA(k)] =
[NB-3NBCA(k)] = £
[NO-3NBCA(k)].

each k € {1, 7, 27}, £
£ [DB-3NBCA(K)] = £
[DO-3NBCA(K)] = £

3. Conclusions

In this paper, we investigated how the difference of
the configuration-reader affects the accepting powers of
k-neighborhood template A-type three-dimensional
bounded cellular acceptor(abbreviated as A-3BCA(k)).
As the showed that when the
configuration-reader is deterministic, the A-3BCA(k)
which is the converter is nondeterministic is more
powerful than the A-3BCA(k) which is the converter is
deterministic. However, this tendency is not always true
when the configuration-reader is nondeterministic.

We conclude this paper by giving a few open
problems.

results, we

Hierarchy Based on Configuration

(1) Accepting powers in the case of alternating version
of

configuration-reader.

(2) Closure properties of A-3BCA(k).

(3) Recognizability of topological four-dimensional
input tapes by A-3BCA(k).
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