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Abstract 

Recently, due to the advance in dynamic image processing, computer animation, augmented reality (AR), and so 
forth, it has become increasingly apparent that the study of four-dimensional pattern processing (three-dimensional 
pattern processing with time axis) should be very important. Thus, the study of four-dimensional automata as the 
computational model of four-dimensional pattern processing has been meaningful. From this point of view, we first 
introduced a four-dimensional automaton in 2002. In the multi-dimensional pattern processing, designers often use 
a strategy whereby features are extracted by projecting high-dimensional space on low-dimensional space. In this 
paper, from this viewpoint, we introduce a new computational model, k-neighborhood template A-type 
three-dimensional bounded cellular acceptor (abbreviated as A -3BCA(k)) on four-dimensional input tapes, and 
discuss hierarchy based on neighborhood template about A-3BCA(k). 

Keywords: cellular acceptor, computational complexity, configuration-reader, converter, four-dimension, neighbor 

1. Introduction and Preliminaries 

Due to the advances in many application areas such 
as computer animation, dynamic image processing, and 
so on, the study of four-dimensional pattern processing 
has been of crucial importance. Thus, the study of four 
dimensional automata as the computational models of 
four-dimensional pattern processing has been 
meaningful. From this point of view, we first proposed 
four-dimensional automata as computational models of 
four-dimensional pattern processing in 2002 [4], and 

investigated their several accepting powers. By the way, 
in the multi-dimensional pattern processing, designers 
often use a strategy whereby features are extracted by 
projecting high-dimensional space on low dimensional 
space. So, from this viewpoint, we introduce a new 
computational model, k-neighborhood template A-type 
three-dimensional bounded cellular acceptor 
(abbreviated as A-3BCA(k)) on four-dimensional tapes 
in this paper, and discuss some basic properties. An A 
-3BCA(k) consists of a pair of a converter and a 
configuration-reader. The former converts the given 
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over Σ is denoted by Σ(4). Given a tape x∈Σ(4), for each 
integer j(1≤ j ≤4), we let lj(x) be the length of x along 
the jth axis. The set of all x∈Σ(4) with l1(x) = n1, l2(x) = 
n2, l3(x) = n3, and l4(x) = n4 is denoted by Σ(n1,n2,n3,n4). 

When 1 ≤ ij ≤ lj(x) for each j(1 ≤ j ≤ 4), let x(i1, i2, i3, i4) 
denote the symbol in x with coordinates (i1, i2, i3, i4). 
Furthermore, we define 

 
x[(i1, i2, i3, i4), (i’1, i’2, i’3, i’4)], when 1 ≤ ij ≤ i’j≤ lj(x) for 
each integer j(1 ≤ j ≤ 4), as the four-dimensional input 
tape y satisfying the follwing conditions: 
(i) for each j(1 ≤ j ≤ 4), lj(y) = i’j - ij + 1; 
(ii) for each r1, r2, r3, r4(1 ≤ r1 ≤ l1(y), 1 ≤ r2 ≤ l2(y), 
1 ≤ r3 ≤ l3(y), 1 ≤ r4 ≤ l4(y)), y(r1, r2, r3, r4) = x(r1 + i1 ≤ 
1, r2 + i2 ≤ 1, r3 + i3 ≤ 1, r4 + i4 - 1). (We call x[(i1, i2, i3, 
i4), (i’1, i’2, i’3, i’4)] the [(i1, i2, i3, i4), (i’1, i’2, i’3, 
i’4)]-segment of x.) 
We let each sidelength of each input tape of these 
automata be equivalent in order to increase the 
theoretical 
interest. 

2. Main Result 

This section investigates how the difference of the 
neighborhood template of converter affects the 
accepting powers of A-3BCA(k)'s. First, we investigate 
the difference between the accepting powers of 
one-neighbor and seven-neighbor.  
 
Lemma 1. Let T1 = {x∈{0,1,2}(4)|	∃n ≥ 1 [l1(x) = l2(x) = 
l3(x) = l4(x) = n & ∀i(1≤i≤n)[x[(1,1,n,i), (n,n,n,i)] = 
x[(1,1,n,i), (n,n,i,n)]]]}. Then,  (1) 
T1 ∈ L[DA-3DBCA(7)]  ⋂  L[DB-3DBCA(7)] ⋂ 
L[DO-3DBCA(7)], and (2) T1 ∉ L [TM-3NBCA(1)]. 
 
Proof: (1) The proof is omitted here since it is easy to 
prove. (If necessary, see the proof of Lemma 1(1) in 
[6].) (2) We can show T1 ∉ L[TM-3NBCA(1)] by using 
the same technique as in the proof of theorem 1 in [7]. 
Suppose that there exists a TM-3NBCA(1) M = (R,B) 
accepting T1, where R is a converter and B is a 
configuration-reader. 
Let S be the number of states of each cell of R. For each 
n ≤ 1, let 
 
V (n)={x∈{0,1}(4)|l1(x) = l2(x) = l3(x) = l4(x) = n + 1 &∀ 
i(1≤i≤n)x[(1,1,1,i),(n+1,n+1,n,i) ∈ {0}(3), 
x[(1,1,n+1,n+1), (n+1,n+1, n+1, n+1)] ∈ {0}(3)} and 
W(n) = V (n) ⋂ T1. 
 

Also, for each x ∈ V (n) and for each i(1≤ i≤ n), let 
 (x)ߩ ,the configuration of R just after reading x ≡ (x)ߩ
≡ [(1,1,n+1,i),(n+1,n+1,n+1,i)]-segment of ߩ (x), and 
 ߩ (x) ≡ the [(1,1,n+1,i),(n+1,n+1,n+1,i)]-segment ofߩ
(x). Further, for each n ≥ 1, let C(n) = {	ߩ(x) | x∈W(n)}. 
Then, the following two propositions must hold.  
 
Proposition 1. For each i(1 ≤ i ≤ n), 
(i) For any two tapes x, y ∈	V (n) such that their 
[(1,1,1,i),(n+1,n+1,n,i)]-segment are identical, ߩ(x) = 
 ,(y)ߩ
(ii) For any two tapes x, y ∈	V (n) such that their 
[(1,1,1,i),(n+1,n+1,n,i)]-segments are identical, ߩ(x) = 
 .(y)ߩ
 
[proof: Since R is deterministic and is of one-neighbor, 
the proof is easy to see.                       □] 
 
Proposition 2. For any two different tapes x, y ∈ W(n), 
 .(y)ߩ ≠ (x)ߩ
 
[Proof: Suppose, on the contrary, that ߩ(x) = ߩ(y). 
Consider the tapes z ∈ V (n) satisfying the following 
two conditions for each i(1 ≤ i ≤ n): 

1 ⃝ z[(1,1,1,i),(n+1,n+1,n,i)]= 
x[(1,1,1,i),(n+1,n+1,n,i)], 

2 ⃝	z[(1,1,n+1,i), (n+1,n+1,n+1,i)] = y[(1,1,n+1,i),(n + 
1,n + 1,n + 1,i)]. 

Clearly, x ∈ W(n) ⊆ T1. Thus x is accepted by M. 
Therefore, ߩ(x) is accepted by B. 

On the other hand, it follows from 1 ⃝ and Proposition 
1 (i) that ߩ(x) = ߩ(y), and it follows from  2 ⃝ and 
Proposition 1 (ii) that ߩ(x) = ߩ(y). Further, from the 
foregoing assumption ߩ (z) = ߩ (y), it follows that 
 ,(x)ߩ = (z)ߩ (x) andߩ = (z)ߩ (x). Fromߩ = (z)ߩ
it follows that ߩ(z) = ߩ(x). 

Since ߩ(x) is accepted by B, ߩ(z) is also accepted by 
B. Consequently, z is also accepted by M. This is a 
contradiction.(Note that z ∉ T1.)          □] 
 
Proof of Lemma 1(continued) : As is early seen, 
|W(n)| = 2n(n+1)(n+1) and |C(n)| ≤ s(n+1)(n+1) 
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Therefore, it follows for large n that |W(n)| < |C(n)|. 
Consequently, it follows for such large n that there must 
be two different tapes x,y∈W(n) such that ߩ (x) ≠ 
ߩ (y). This contradicts Proposition 2.                   
□ 
 
Theorem 1. For each A ∈ {DA, NA, DB, NB, DO, 
NO, DOP,NOP, DP, NP, TM} and for each X ∈{D, N}, 
L [A-3XBCA(1)] ⊊ L [A-3XBCA(7)]. 
 
Proof: The inclusion relation holds immediately 
definitions. Further, it is easily seen from Lemma 1 and 
Proposition 1 in [1] that the theorem holds.        □ 
 

We investigate the difference between the accepting 
powers of seven-neighborhood and 
twenty-seven-neighbor. As shown later in Theorem 2 
and 3, different situations emerge depending on whether 
the converter is deterministic or nondeterministic. First, 
we consider the case when the converter is 
deterministic. 
 
Theorem 2. For each A ∈ { DA, NA, DB, NB, DO, 
NO }, L [A-3DBCA(7)] ⊊ L [A-3DBCA(27)]. 
 
Proof : The inclusion relation holds immediately from 
definitions. Further, it is easily seen from Theorem 3 
and Proposition 1 in [7] that the theorem holds.         
□ 
 

We conclude this section by investigating the 
difference between the accepting powers of 
seven-neighbor and twenty-seven-neighbor for the case 
when converter is nondeterministic. 
 
Theorem 3. For each  A ∈ { DA, NA, DB, NB, DO, 
NO, DOP, NOP, DP, NP, TM }, L [A-3DBCA(7)] = L 
[A-3NBCA(27)]. 
 
Proof: For each A ∈ { DA, NA, DB, NB, DO, NO, 
DOP, NOP, DP, NP, TM }, it is obvious that 
L[A-3NBCA(7)]⊆L[A-3NBCA(27)] from definitions. 
Below, we show that L [A-3NBCA(7)] ⊇  L 
[A-3NBCA(27)].  Given an A ∈ { DA, NA, DB, NB, 
DO, NO, DOP, NOP, DP, NP, TM }, we let M = (R, B) 
be an A-3NBCA(27). We now consider the 
A-3NBCA(7) M’ = (R’, B’) which acts as follows. 

Suppose that a four-dimensional input tape x with each 
sidelength n (n ≥ 2) is presented to M. Since R’ has 
seven neighbors, each voxel of R’ can refer directly to 
the states of , remarkable, north, south, east, west, up, 
and down neighbor voxels, but not other neighbor 
voxels. Therefore, by guessing the seven states of 
neighbor voxels which cannot be referred to directly, 
and by checking whether or not this guess is convect, 
each voxel of R’ simulates the action of the 
corresponding voxel of R. In fact, M’= (R’, B’) acts as 
follows. 
 
(i) Action of the converter R’ 
 
R’ starts to act with the same initial configuration with 
one of R. That is, every voxel reading the boundary 
symbol is in q#, which is the boundary state of R, and all 
of the other voxels are in q0, which is the initial state of 
R. Next, the seven states of neighbor voxels of R is 
easily simulated by R’, and the twenty states of other 
neighbor voxels of R are guessed nondeterministically 
by R. 
 
(ii) Action of the configuration-reader B’ 
 
B’ accepts the configuration of R’ just after reading 
x (say, ߩ(x)), if and only if the following  1 ⃝ , 2 ⃝ , 3 ⃝ are 
satisfied. 
1 ⃝ For each i, j, k (1 ≤ i, j, k ≤ n), no (i, j, k)-voxel enters 
the dead state. 
2 ⃝	The information guessed by any (i, j, k)-voxel on the 
last three-dimensional rectangular array of 
four-dimensional input tape is correct. 
3 ⃝	 Let h be a mapping extracting one state, which is 
obtained by simulating the action of the corresponding 
voxel of R, from the states stored in the state of (i, j, 
k)-voxel. Let h be a projection which is obtained by 
extending the mapping h. Then h(ߩ(x)) is accepted by B. 
In  1 ⃝ and 2 ⃝ in the foregoing, check whether or not 
R’ can correctly simulate the action of R. Therefore, it is 
clear thet h(ߩ(x)) reflects the configuration of R just 
after reading x, if  1 ⃝ and  2 ⃝ are satisfying. It is easily 
seen that T(M’) = T(M) for M = (R’, B’). Thus, L 
[A-3NBCA(7)]⊇L [A-3NBCA(27)]. This completes the 
proof of the theorem.                          □ 
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3. Conclusions 

In this paper, we investigated how the difference of 
neighborhood template of the converter affects the 
accepting powers of k-neighborhood template A-type 
three-dimensional bounded cellular acceptor 
(abbreviated as A-3BCA(k)). Generally speaking, when 
the converter is deterministic, the accepting power of 
the A-3BCA(k) tends to be more powerful as the number 
of neighborhood cells of the converter increases or the 
accepting power of the configuration-reader is more 
powerful. However, this tendency is not always true 
when the converter is nondeterministic. 

We conclude this paper by giving two open problems. 
 
(1) For each A ∈{DOP, NOP, DP, NP, DTM, NTM}, L 
[A-3DBCA(7)] ⊊ L [A-3DBCA(27)]? 
 
(2) L [NO-3NBCA(7)] ⊊ L [DOP-3NBCA(27)]? 
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