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Abstract 

In a standard Evolutionary Algorithms (EAs), one uses the same rate for mutations from bit 1 to bit 0 and its 
reverse direction. There are many reports that the asymmetric mutation model is a very powerful strategy in EAs to 
obtain better solutions more efficiently. In this paper, we report stochastic behaviors of algorithms that are 
asymmetric mutation models of Random Local Search (RLS). The mathematical structure of asymmetry model can 
be derived in terms of a finite Markov chain. We demonstrate some useful results representing the effects of 
asymmetric mutation. 
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1. Introduction 

Theoretical studies of EAs have been performed from 
various viewpoints. One of the most attractive objects of 
them is the convergence properties of EAs [1]. In the 
previous conference, we have reported a randomized 
heuristics, which mainly treated the computational 
complexity of Random Local Search (RLS) [2]. Our 
study used the results obtained in researches on Coupon 
Collector Problem (CCP), and made a mathematical 
analysis of hitting time in RLS by extending the original 
model of CCP.  

In this conference, we report another extension of 
RLS, an asymmetric mutation model. We apply the 
asymmetric mutation in evolution of RLS; that is, 𝑝𝑎 
for mutation 0 → 1 and 𝑝𝑏  for 1 → 0, respectively. 

We carry out a theoretical analysis for the evolution of 
strings in the framework of a finite Markov chain [3]. 

The asymmetric mutation model is a very powerful 
strategy in EAs to obtain better solutions more 
efficiently [4]. In biology, spontaneous misreading of 
bases during DNA synthesis, mutation, is considered as 
a major factor contributing to evolution. Wada et al. 
showed that double-stranded DNA type strings can 
solve the knapsack problem effectively by using the 
asymmetric machinery of DNA replication [5]. They 
used different mutation rates for the leading and lagging 
DNA strands. 

To analyze the behavior of the evolution processes, it 
is necessary to take into account of effects due to 
stochastic fluctuations. During the study of asymmetric 
mutation model of RLS, we noted mathematical papers 
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in learning model with reinforcement, which gave the 
Markov chain model of learning processes [3]. We 
found that results in these papers can be interpreted as a 
model of RLS with asymmetric mutation rates, and 
apply these results in the present study. 

In this model, we obtained an explicit form of Markov 
chain transition matrix, and furthermore the eigenvalues 
of this matrix were calculated by using rather technical 
methods. The largest eigenvalue is naturally 𝜆0 = 1, 
and the second largest one is 𝜆1 = 1 − (𝑝𝑎 + 𝑝𝑏)/𝑙. 
Since the most important factor to decide the speed of 
convergence is the second largest eigenvalue, we know 
the averaged value of two mutation rates mainly 
controls the speed of evolution. We will show in our 
report the behavior of solutions from the aspects of 
mathematical analysis and numerical simulations. 

2. Evolutionary Algorithms 

As a test function, we adopt OneMax function 𝑓(𝑥) 

𝑓(𝑥) = �𝑥𝑖

𝑙

𝑖=1

,   𝑥𝑖 ∈ {0,1}, 
 

where 𝑥 is a binary string of length 𝑙. We consider the 
maximization of OneMax function. The optimum 
solution is 𝑥𝑜𝑝𝑡 = {1}𝑙 , and 𝑓�𝑥𝑜𝑝𝑡� = 𝑙.  
1. The first choice of Evolutionary Algorithm is the 

Random Local Search (RLS). We define RLS as 
Algorithm 1    Random Local Search 

1: Initialize 𝑥 ∈ {0,1}𝑙 uniformly at random. 
2: Create 𝑥′  by flipping one bit in 𝑥  which is 

selected at random. 
3: Select if 𝑓(𝑥′) > 𝑓(𝑥) then 𝑥 ≔ 𝑥′. 
4: Go to 2 until a termination condition is fulfilled. 
2. The next one is RLS with asymmetric mutation 

(ARLS). The ARLSis defined  as 
Algorithm 2    RLS of Asymmetric Mutation 

1: Initialize 𝑥 ∈ {0,1}𝑙 uniformly at random. 
2: Select one bit 𝑥[𝑗] in 𝑥 at random. 
3: With probability 1 − (𝑝𝑎 + 𝑝𝑏), 𝑥′[𝑗] = 𝑥[𝑗]. 

If 𝑥[𝑗] = 0 then 𝑥′[𝑗] = 1 with probability 𝑝𝑎. 
If 𝑥[𝑗] = 1 then 𝑥′[𝑗] = 0 with probability 𝑝𝑏 . 

4: If 𝑥[𝑗] is flipped then 𝑥 ≔ 𝑥′. 
5: Go to 2 until a termination condition is fulfilled. 
3. The third one is a lazy version of RLS, which is 

defined as 
 
 

Algorithm 3    Lazy RLS  

1: Initialize 𝑥 ∈ {0,1}𝑙 uniformly at random. 
2: Select one bit 𝑥[𝑗] in 𝑥 at random. 
3: Does not change 𝑥[𝑗] with probability 1 − 𝑝𝑎. 

If 𝑥[𝑗] = 0 then 𝑥′[𝑗] = 1 with probability 𝑝𝑎. 
4: If 𝑥[𝑗] is flipped then 𝑥 ≔ 𝑥′. 
5: Go to 2 until a termination condition is fulfilled. 

This model is also defined as the variation of ARLS by 
putting 𝑝𝑏 = 0. 

3. Markov Chain Model 

This section presents the Markov chain approaches to 
the EAs. The search space of OneMax function is 
Ω = {0,1}𝑙 , and we divide Ω  into (𝑙 + 1)  subsets 
Ω = 𝑆0 ∪ 𝑆1 ∪ ⋯∪ 𝑆𝑙, where 𝑓(𝑆𝑖) = 𝑖. 

3.1. Asymmetric mutation model of RLS 

The transition matrix 𝑃𝑖,𝑗 = 𝑃(𝑗|𝑖)  represents the 
evolution of ARLS. 

1. For 𝑗 = 𝑖 + 1, 0 ≤ 𝑖 < 𝑙 

𝑃𝑖,𝑖+1 = 𝑝𝑎 �1 −
𝑖
𝑙
�.  

2. For 𝑗 = 𝑖 − 1, 0 < 𝑖 ≤ 𝑙 

𝑃𝑖,𝑖−1 = 𝑝𝑎
𝑖
𝑙
.  

3. For 𝑖 = 𝑗, 0 ≤ 𝑖 ≤ 𝑙 

𝑃𝑖,𝑖 = 1 − 𝑝𝑎 �1 −
𝑖
𝑙
� − 𝑝𝑎

𝑖
𝑙
.  

For example, the transition matrix for 𝑙 = 3 is given 
by 

𝑷 =

⎝

⎜
⎜
⎛

1 − 𝑝𝑎 𝑝𝑎
1
3 𝑝𝑏 1 −

2
3𝑝𝑎 −

1
3𝑝𝑏

  
0                 0
2
3
𝑝𝑎             0

0                   
2
3𝑝𝑏      

0                  0          

1 −
1
3𝑝𝑎 −

2
3𝑝𝑏

1
3𝑝𝑎

𝑝𝑏 1 − 𝑝𝑏⎠

⎟
⎟
⎞

 

The left eigenvectors 𝒖 = (𝑢0,𝑢1,⋯ ,𝑢𝑙) satisfy, in 
the case of 𝑙 = 3, 

(1 − 𝑝𝑎)𝑢0 +
1
3
𝑝𝑏𝑢1 = 𝜆𝑢0,  

𝑝𝑎𝑢0 + �1 −
2
3
𝑝𝑎 −

1
3
𝑝𝑏� 𝑢1 +

2
3
𝑝𝑏𝑢2 = 𝜆𝑢1,  

2
3
𝑝𝑎𝑢1 + �1 −

1
3
𝑝𝑎 −

2
3
𝑝𝑏� 𝑢2 + 𝑝𝑏𝑢3 = 𝜆𝑢2,  

1
3𝑝𝑎𝑢2 + (1 − 𝑝𝑏)𝑢3 = 𝜆𝑢3.  

We define the 𝑙th order polynomial function 
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𝑓(𝑧) = 𝑢0 + 𝑢1𝑧 + 𝑢2𝑧2 + 𝑢3𝑧3 + ⋯+ 𝑢𝑙𝑧𝑙 .  

Multiplying eigenvalue equations with 1, 𝑧, 𝑧2, … , 𝑧𝑙, 
respectively, and summing them up, we have 

𝑙(𝑝𝑎𝑧 + 1 − 𝑝𝑎 − 𝜆)𝑓(𝑧) − (𝑧 − 1)(𝑝𝑎𝑧 + 𝑝𝑏)𝑓′(𝑧) = 0. 

Considering this as a differential equation of 𝑓, we 
have 

𝑓(𝑧) = 𝐶(𝑧 − 1)𝑘(𝑝𝑎𝑧 + 𝑝𝑏)𝑙−𝑘,  

𝑘 =
𝑙(1 − 𝜆)
𝑝𝑎 + 𝑝𝑏

,  

where 𝐶  is an arbitrary constant. Since 𝑓(𝑧)  is a 
polynomial of 𝑙 th order, 𝑘  must be an integer of 
{0,1, … , 𝑙}. Then the eigenvalues are given by 

𝜆𝑘 = 1 −
𝑘
𝑙

(𝑝𝑎 + 𝑝𝑏), 𝑘 = 0,1, … , 𝑙. ⑴ 

The largest eigenvalue is 𝜆0 = 1 , and the second 
largest one  is 𝜆1 = 1 − (𝑝𝑎 + 𝑝𝑏)/𝑙 , which 
determines the convergence speed of the chain. 

The eigenvector corresponding to the largest 
eigenvalue 𝜆0 = 1  presents the distribution of the 
stationary state. In this case of 𝑘 = 0, we have 

𝑓(𝑧) = (𝑝𝑎𝑧 + 𝑝𝑏)𝑙 = ��𝑙𝑖� 𝑝𝑎
𝑖𝑝𝑏𝑙−𝑖𝑧𝑖

𝑙

𝑖=0

,  

thus the components of eigenvector with normalization 
are given by 
𝑢𝑖 = �𝑙𝑖� 𝑝𝑎

𝑖𝑝𝑏𝑙−𝑖/(𝑝𝑎 + 𝑝𝑏)𝑙 ,   (0 ≤ 𝑖 ≤ 𝑙). ⑵ 

From this, we can obtain  the average number of bit 
ones, 

𝑖 = 𝑙
𝑝𝑎

𝑝𝑎 + 𝑝𝑏
.  

Similarly, we have the variance 
𝑉(𝑖) = 𝑙

𝑝𝑎 ∙ 𝑝𝑏
(𝑝𝑎 + 𝑝𝑏)2

.  

Both quantities depend on the ratio of two mutation 
rates 𝑝𝑏/𝑝𝑎. 

3.2. Lazy RLS 

The transition matrix for the lazy RLS shows that the 
Markov chain is absorbing one, and there are 𝑙 
transient and one absorbing states, respectively. For 
absorbing Markov chains, the transition matrix is 
represented as 

𝑷 = �𝑸 𝑹
𝟒 𝑰� ⑶ 

The 𝑙 × 𝑙 submatrix 𝑸 shows transition probabilities 
among transient states 𝑆0, 𝑆1,⋯ , 𝑆𝑙−1 . Since there is 
only one absorbing state, the unit matrix 𝑰 is a scalar 1.  

For the calculation of the hitting time of the optimum 
solution, we use the fundamental matrix 

𝑵 = (𝑰 − 𝑸)−1. ⑷ 

After some calculations, we have 
𝑁𝑖,𝑗 = 0, (𝑖 > 𝑗) 

 

                        =
𝑙

(𝑙 − 𝑗)𝑝𝑎
, (𝑖 ≤ 𝑗).  

The expected step 𝐸𝑖(𝑡) to enter into the absorbing 
state from the initial state 𝑖 is given by the vector 𝒎 
of (𝑙 × 1) [3] 

𝒎 = 𝑵𝟏,  

where 𝑚𝑖 is the expected step from ith state, and 𝟏 is 
a column vector whose all entries are 1.  

The variance of 𝑡 is given by 
𝑉(𝑡) = (2𝑵 − 𝑰)𝒎−𝒎2,  

where 𝒎2 is a column vector whose elements are 𝑚𝑖
2. 

4. Numerical Experiment 

In this section, we demonstrate theoretical predictions  
and results of numerical calculations for comparison. 
We performed 10000 runs for each calculation, and 
obtained statistical quantities from them. 

Figure 1 shows the stationary distribution of the 
asymmetric mutation model. The string length 𝒍 = 𝟒𝟒, 
𝒑𝒂 = 𝟒. 𝟒𝟎 and 𝒑𝒃 = 𝟒.𝟒𝟎. The crosses are the result 
of numerical calculation. The solid line is the theoretical 
prediction obtained by eq.⑵. 

Figure 2 shows the distribution of the first hitting time 
of the optimum solution in Lazy RLS. The string length 
𝒍 = 𝟎𝟒 and mutation rate 𝑝𝑎 = 𝟒. 𝟎. The initial state is 
a bit string of all zeros. Dots are the numerical results. 
The solid line is the theoretical prediction obtained by 
using Markov chain transition matrix. 
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Figure 3 shows the dependence of the average hitting 
time and its standard deviation (SD) on mutation rate 
𝑝𝑎 in Lazy RLS. The string length 𝑙 is 20. The initial 
state is a bit string of all zeros. The thin solid line is the 
theoretical prediction of the average hitting time, and 
the thick solid line represents the theoretical SD. Circles 
and crosses are numerical results. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

5 Summary 

In this paper, we considered the behavior of the 
asymmetric mutation in the solving the optimization of 
OneMax function. This problem can be solved 
analytically in terms of a finite Markov chain [3]. We 
derived the eigenvalues and eigenvectors. 

In genetic biology, it has been suggested by many 
statistical studies that asymmetric directional mutation 
pressures are commonly observed. It is interesting to 
study the phenomena using our theoretical approach. 
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Fig. 1. Distribution of the stationary state in 
asymmetric mutation model of RLS with 𝒍 = 𝟒𝟒.  
Mutation rates are 𝒑𝒂 = 𝟒.𝟒𝟎  and 𝒑𝒃 = 𝟒.𝟒𝟎 , 
respectively.  

Fig. 2. Distribution of the first hitting time in Lazy 
RLS with 𝒍 = 𝟎𝟒 and 𝒑𝒂 = 𝟒.𝟎. The initial state is 
a bit string of all zeros. Dots are RLS calculations, 
and the solid line is the theoretical prediction. 

Fig. 3. Mutation rate dependence of the average 
hitting time and its standard deviation in Lazy RLS 
with  𝒍 = 𝟎𝟒.  
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