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Abstract 

This paper is concerned with the fixed-time consensus tracking problem for multi-AUV (autonomous underwater 

vehicle) systems with uncertain parameters and external disturbances. Firstly, a fixed-time terminal sliding mode is 

proposed, which can avoid the singularity problem. Then, a continuous distributed consensus tracking control law 

is designed based on Neutral Network approximation technique, which can guarantee the consensus tracking errors 

converge to the desired regions in fixed time. A simulation example is given to show the effectiveness of proposed 

methods. 
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1. Introduction 

Distributed cooperative control of multiple AUVs has 

been paid to much attention due to its potential 

applications in oceanographic surveys and deep sea 

inspections [1]. The distributed cooperative control for 

multi-AUV systems has been investigated by using the 

backstepping technique [2] and the adaptive control 

approach [3]. However, the protocols proposed in them 

can only guarantee the closed-loop system is 

asymptotically stable. For the distributed cooperative 

control, one significant requirement is the fast 

convergence rate. Compared with the asymptotic 

control approaches, the finite-time control approaches 

can not only provide fast convergence rate but also 

provide higher tracking precision and better disturbance 
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rejection ability [4]. Therefore, many finite-time control 

laws are proposed for various multi-agent systems in the 

past few years [5]–[7]. However, the settling time can 

be estimated dependent on the initial conditions of 

systems in there. In practical applications, we desire that 

the settling time is estimated independent on the initial 

conditions of systems. In this paper, we will further 

investigate the adaptive finite-time consensus tracking 

problem for multiple AUVs with uncertain dynamics 

using fixed-time terminal sliding mode. 

2. Systems Description 

This paper considers the networked multiple AUV 

system with n following AUVs and one virtual leader, 

and the communications among them are described by a 

digraph G . The definitions and descriptions of graph 

G are given in [7] and [9], which is omitted for brevity. 

Assume that all the following AUVs have fixed 

attitudes. The translational dynamics of the i-th AUV 

( i V ) are given as [10]: 
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        (1) 

where [ , , ] , [ , , ]
T T

i i i i i i i i
p x y z       denote position 

and attitude vectors in the inertial reference frame, 

respectively,  i i
R  is the kinematic transformation 

matrix, [ , , ]
T

i i i i
v u v  is translational velocity vector in 

the body-fixed reference frame,
i

M is the inertia matrix, 

 i i
D v is the damping matrix,  i i

g   is there storing 

force vector, 
3

i
  is the control force vector, 

and
3

i
w  is the disturbance force vector. 

i
M ,  i i

R  , 

 i i
D v ,  i i

g   are defined in [10]. In this paper, we 

assume that  i i
D v  and  i i

g  have uncertain 

parameters. Note that 
T

i i
R R I .Denote 

3

d
p  as the 

state vector of virtual leader and 
d

p ,
d

p are all assumed 

to be smooth, bounded and known functions.  

Assumption 1. G has a spanning tree, and the leader 

node is the root node. 

3. Main results 

3.1. Fixed-time terminal sliding mode (FTTSM) 

Denote 
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From (3), we can obtain the following equation  

2 2i i i i i
s s e e                                                  (5) 

From the definition of 
2 i

e , we further have 

 2

1

n

i i i i ij j i d

j

e d b p a p b p


    (6)       

and from (1), we can obtain  
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   is an unknown constant. 
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3.2. Control law design 

From the approximation property of RBF Neutral 

Networks (NNs), we have 

  T
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W Z                                 (9) 
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 is a constant. Denote ˆ
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 as the estimate 

of
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W  , then the adaptation law is designed as 
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where , ,
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h  are designed positive constants. 

Theorem 1.Suppose that Assumption 1 holds for system 

(1), then we can choose the control law 
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Proof. Denote ˆ
i i i

    , and choose the Lyapunov 

function as 

 
2

1

1 1 1

2 2

n
T

i

i i

V S S 


                        (12) 

we have 

  1

1 1 1 1

n n n n
T T T

i i i i i i i i i i i i

i i i i

V s s s d b R M w s s 

   

         

   (13) 

From 

2 ,2

2

,2

1 1 1 1

2 2 22

1 1

2 2

TT T T T

i i i i i i i i i i

i

T

i i i i

s s s W h s s
h

w s s s w

 

 

      

 

(14) 

Substituting (10), (11), (14) into (13) yields 
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Using the similar proof as in [9], we have 
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Suppose that there exists a compact set   such that 
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     , then we have 
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From (16) and (17), we can further obtain  
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It can be seen from Lemma 2 in [8] that the system 
(12) is practical fixed-time stability. Moreover, is will 
converge into the region i ss ≤ ∆ in fixed settling 
time.The next proofs are similar with that of [7] and [9], 
thus are omitted for brevity. 

4. Simulations 

We consider a direct network with three AUVs and a 
virtual leader, the matrices L and Bare described as: 

 
0 0 0 1 0 0
1 1 0 , 0 0 0
1 0 1 0 0 0

L B
   
   = − =   
   −   

  

We assume that all the AUVs have the same 
structure and the model parameters 
are diag{175.4,140.8,140.8},iM = {120 + 90 ,i iD u=  
90 90 ,150iv+ +90 }, , ,5 10 12i i i i

π π πω φ θ ψ= = − =
 

[10]. The response curves under control law (11) are 
shown in Fig. 1.Note that the control law(11) can ensure 
the closed-loop system has desired robustness. 

5. Conclusions 

This paper studied the fixed-time consensus tracking 
control of Multiple AUVs. AFTTSM based adaptive 
chattering-free control law was designed, which could 
guarantee the closed-loop system had desired fixed-time 
tracking performance. 
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Fig. 1.   Response curves of pd and pi(i=1,2,3)under control 
law (11). 
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