
This paper devotes to the problem of ellipse-to-ellipse coplanar rendezvous, where the solution and distribution of 
Hohmann-type optimal impulsive rendezvous are investigated. The analytical relation between the initial states and 
rendezvous time are derived for Hohmann-type, and the optimal impulse amplitudes are given thereupon. The 
distribution boundary of Hohmann-type model is obtained according to the Hohmann transfer and Hohmann with 
coasts. Simulations are demonstrated to analyze the influences of the solution and distribution. 
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1. Introduction

Optimal impulsive rendezvous is aimed at obtaining 
minimum-fuel guidance strategy for spacecraft 
rendezvous, which has attracted considerable attention. 
Despite that Lawden’s necessary conditions1 for optimal 
impulsive trajectories and Lion’s improving methods2 
for non-optimal trajectories have provided some 
guidelines to solve the optimal problem where the initial 
states and rendezvous time are specified, the 
distributions of optimal models cannot be obtained 
clearly in these way. So far, only Prussing’s theory3 of 
optimal impulsive rendezvous on close circular orbits is 
complete in its theoretical system, which derives the 
solutions and distributions of optimal impulsive models 
by solving the primer vector equations and boundary 
value problem. A reference frame in mean velocity orbit 
was built by Frank4, and showed better performance in 
describing the impulse locations and magnitudes than 
the mean radius orbit in Prussing’s results. Xie5 focused 
on the selection of reference frame for optimal 
impulsive rendezvous, and investigated the effect on the 

classification, distribution and guidance precision. For 
the case of elliptic orbit rendezvous, Wang6 used the 
state transition matrix given by Yamanaka7 to calculate 
the optimal solution of four-impulse model, but the 
analytical solution and the distribution are difficult to be 
achieved. Chen8,9 studied the ellipse-to-circle coplanar 
rendezvous based on his results on the dynamical 
equations for elliptic orbit rendezvous in low 
eccentricity, and provided the solutions and 
distributions of all types optimal models. Motivated by 
which, our previous work10 considered the ellipse-to-
ellipse coplanar rendezvous and obtained the analytical 
solution and distribution of four-impulse model. In this 
paper, we will further investigate the Hohmann-type 
model for optimal impulsive ellipse-to-ellipse coplanar 
rendezvous. 

2. Dynamics Description
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The relative motion between two spacecrafts in elliptic 
orbits was derived in our previous work10, which is still 
used in this paper and given as follow: 
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0 01 02 03 04, , ,

0,0,0,0

T

T
F

x x x x x

x
 (2) 

where 
1 1

01

02
1 1
2 2

03
3 3

2 22 2
04

1 cos 1 cos

sin sin

1 cos 1 cos

c c c t t t

c c c t t t

c c c t t t

x k e f k e f
x

x k e f k e f

x k e f k e f

 (3) 

 is the difference of phase angle between two 
spacecrafts;  and are their eccentricities and 
true anomalies, respectively. 

 The states at phase angle  was also deduced[10]: 
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3. Optimal Hohmann-Type Rendezvous

The solution to primer vector equations corresponding 
to system (1) can be given in the following form: 
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Hohmann-type model is a special case of optimal two-
impulse rendezvous, where the coefficients of (6) are  

0, 1A B C D                 (7) 
then . It can be verified that the 
necessary conditions of optimal impulsive rendezvous 
are satisfied for any phase angle .  

3.1.  Solution of Hohmann transfer 

The impulse direction can be obtained from the solution 
(6), while the impulse time and magnitudes needed be 
calculated according to the following boundary value 
problem: 
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where , and  are the 
magnitudes of two impulse, and  is the rendezvous 
time. From (4) and (8), we have 
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then 
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Substituting (5) into (10), it can be obtained that 
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On the other hand, from the second row of (8), it has 
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Combining (5), (9) and (13), it has 
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The appropriate initial states and rendezvous time which 
satisfy the necessary conditions of Hohmann transfer 
can be obtained by solving (11) and (14) together, and 
then, the second impulse  can be obtained as 
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3.2. Distribution of Hohmann-type model 

The distribution of optimal Hohmann-type rendezvous 
is to illustrate the existence of feasible solution. To 
investigate the distribution, rendezvous time is chosen 
as the X-coordinate and the special phase angle defined 
below as Y-coordinate: 
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4 3 31.5 sin sinF F Fd d d  (16) 

Let be rendezvous time solved by (11) and (14), 
and is the corresponding special phase angle. If 

 and , then it is just the Hohmann 
transfer. The two impulses are implemented at 
and . However, when the real rendezvous time is 
longer than , the coasts are needed to save the fuel. 

If  and , it is a Hohmann model 
with terminal coast. The two impulses are implemented 
at  and , and the residual time 
is for terminal coast. The special phase angle  and 
rendezvous time  should satisfy the following relation 
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If  and the special phase angle 
satisfies 
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then, after the initial coast for  time , the special 
phase angle will become exactly . This case is a 
Hohmann model with initial coast, and the impulses are 
implemented at   and . 
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If  and , then there exists 
a Hohmann model with both initial coast and terminal 
coast. As shown in Fig.1., this case is illustrated in the 
middle of the curves expressed by (17) and (18), that is 
the shadow part. Denote  as the intersection 
point of the curves determined by (16) and (18), then 
the two impulses are implemented at  
and . The initial and terminal coast last for time 

 and  , respectively. 
From the above, the optimal Hohmann-type 

impulsive rendezvous has four models, all of whose 
impulse magnitudes are determined by (9) and (15), and 
impulse direction is along the tangential direction.  

4. Simulations

In this section, simulation examples are presented to 
show the guidance performance and distribution of 
Hohamman-type impulsive rendezvous. 

4.1. Hohmann ellipse-to-ellipse rendezvous 

It is assumed the semi-major axis and eccentricities of 
the target orbit and chaser orbit are initially 

(km), (km), and 
, respectively. Let and (rad) be the 

appropriate rendezvous time and initial difference of 
phase angle, respectively, which satisfy (11) and (14). 
And denote (m) as the optimal radius of reference 
frame, (m) as the initial relative distance, (m),  
and (rad) as the guidance errors.  

Table 1. Results of Hohmann impulsive rendezvous 

1 2 3 4 

3.62 3.44 2.80 2.68 
7.12e-03 9.68e-03 6.04e-03 3.46e-03 
6.70e+06 7.92e+06 7.81e+06 6.71e+06 
4.99e+04 7.05e+04 4.83e+04 2.71e+04 
6.80e+01 3.38e+04 3.09e+04 2.49e+01 
3.38e-05 4.51e-03 4.22e-03 8.92e-06 
5.82e-06 2.87e-04 3.50e-05 3.80e-06 
1.29e+02 5.14e+03 5.71e+02 5.08e+01 

Simulation results of Hohmann transfer for ellipse-
to-ellipse rendezvous are demonstrated in Table 1, 
which shows that: (1) with different true anomalies, 
even if the other initial states are the same, the 

Fig 1 Distribution of Hohmann-type model 
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rendezvous time and initial difference of phase angle 
which satisfy (11) and (14) varies much; (2) the optimal 
radius of reference frame also changes with the true 
anomaly; (3) the guidance precision is high when the 
chaser initially stays around the perigee.  

4.2. Distribution of Hohmann-type model 

To investigate the distribution of Hohmann-type ellipse-
to-ellipse rendezvous, we take rendezvous time  as 
the X-coordinate and  as Y-coordinate. Fig.2 
shows the distribution of Hohmann-type model with 
different true anomalies and eccentricities.  

(a)

(c)

(d)

(f)

Fig 2 Distributions with different true anomalies and 
eccentricities 

5. Conclusion
This paper extends our previous work10 to the
Hohmann-type optimal impulsive rendezvous. By
defining the special phase angle, we derived the
analytical solution for Hohmann transfer, and obtained
that the optimal Hohmann-type impulsive rendezvous
has four models, i.e. Hohmann transfer, Hohmann with
initial coast, Hohmann with terminal coast and
Hohmann with both coasts. In further research, we will
integrate all optimal models in one map, including four-
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impulse, three-impulse, three-impulse with coasts, two-
impulse, two-impulse with coasts, and Hohmann-type. 
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