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Abstract 

Natural computing (NC) is an emerging area of research that investigates computing techniques and models inspired 
by nature on one hand, and it also investigates phenomena taking place in nature in terms of computational 
methodologies on the other hand. Thus, research in NC congenitally has interdisciplinary flavor, which bridges 
between computer science and various disciplines of natural science.  Because of its interdisciplinary nature, NC 
connects and covers a broad spectrum of fundamental research fields including biology, chemistry, physics, medical 
science, and so forth. In this article, we give a concise introduction to the new computing paradigm of NC. 
Specifically, we give an overview of selected topics of the fields from theory to experiments, where the stress is 
primarily put on theoretical achievements in computing paradigms called molecular computing and chemical reaction 
computing.  
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1. Introduction

Natural computing (NC) is a novel computing paradigm 
inspired by nature in which NC concerns a variety of 
computational aspects and potential features found in 
natural phenomena. Also, NC has close relations to 
computational process inspired by those phenomena.    

The goal of NC includes the following research themes.  
(i) From nature to information processing which means
investigating computational mechanism and its
implementation based on lessons from nature, and
(ii) From information processing to nature which means

computational analysis of nature in terms of designing
new computing models and computer experiments
(simulations). Further, NC also intends to exploit new
applications in the fields of various disciplines involved.
It is rather surprising that the conceptual source of the
idea of NC has already appeared in an article of Biofizika
in 1973 where an idea of cell molecular computers was
discussed. Since 1974 Conrad has been conducting
consistent research on the information processing
capability using macro-molecules (such as proteins), and

has edited a special issue in a journal entitled Molecular 
Computing Paradigms. His initial efforts in the early days 
of molecular computing have been succeeded by Head's 
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original work on Splicing   Systems   and Languages 
whose theoretical results on splicing phenomena should 
be highly appreciated, in that it was  the first achievement 
by means of  mathematical analysis on bio-chemical 
operations of DNA recombination.  It is possible to 
discuss about new computing paradigms inspired by 
nature with a general schema of “Computing with X”, 
where X ranges from various sorts of materials to those 
of principles. Figure 1 illustrates a part of natural 
computing paradigms proposed so far within the 
“Computing with X” schema. 

In this short article, among various computing 
paradigms we take up two computing paradigms 
“Molecular computing” (from materials), and “Chemical 
reaction computing” (from principles), and give an 
outline of fundamental results on computing capability of 
these new challenging ingenuity.  

2. Molecular Computing Paradigm

In the early days, the goal of molecular computing 
seemed to replace silicon-based hardware with bio-
molecular one. Unlike this intention of the early schema, 
however, by now it is commonly recognized that 
molecular computers should explore challenging 
applications unsuitable for existing computers.   

In the theory of molecular computing, a variety of 
computation models have been proposed and investigated. 
Among others the models of computation based on self-
assembly are well recognized to be of great importance in 
that they can provide one of the most basic  
frameworks for molecular computing paradigms. In fact, 
Adleman's groundbreaking wet lab experiment [1]  
(solving a small instance of the Hamiltonian Path 
Problem) is a typical example of molecular computation 
based on the self-assembly principle. 

When we make a brief revisit to the Adleman's original 
work in 1994, it turns out that his algorithm may be 
formulated into the schema where component structures 
are sophisticatedly encoded into linear molecules.  From 
these observations, a general schema of “one pot” self-
assembly computation model is outlined as follows:  

1. design a finite set of basic units for assembly
computation (one may take this finite set as a
molecular program),

2. put all those basic units with sufficiently high
concentration into one pot, to create a random pool
of a single pot (that is, leave the pot for a certain
time period, resulting in producing all possible
assembly of basic units),

3. (if necessary) perform screening operations to
extract only necessary (or unnecessary) assembly
of basic units,

4. detect whether or not there is an assembly with
desired constraints, then answer yes if there is, and
no otherwise.

Figure 2 illustrates the overview of computation schema 
based on self-assembly.  

In this section, we will briefly review one of the typical 
models based on self-assembly computation, called YAC 
model. Based on a unique normal form grammar G 
(proposed by Geffert) that can generate any recursively  
enumerable language, a computing model YAC has been 
proposed, in which an input string and every rule in G  
 are translated(encoded) into specific forms of two-
dimensional structural molecules. These basic blocks 
(units) of structural molecules with sticky ends are 
designed so that they may form a DNA complex linearly 
growing by self-assembly property. This means that YAC 
performs a simulation of computation (generation) by G, 
where the input string is accepted by YAC if and only if 
the final DNA complex forms a completely hybridized 
double-stranded (that is a desired constraint to be checked 
by screening mechanism).   
It is shown that any recursively enumerable language can 
be recognized by YAC model.  Thus, the following holds. 

Proposition 1. ([2]) There effectively exists a computing 
model based on self-assembly principle whose 
computational power is Turing universal. 

Other molecular computing models using high-
dimensional structures have been proposed to solve NP-
complete problems such as the satisfiability (SAT) 
problem by Jonoska et al., where 3-dimensional graph 
structures are used and the algorithm for SAT runs in time 
proportional to the number variables involved in a given 
formula.  On the other hand, Yokomori investigated a 
self-assembly computing model in an abstract level, 
called Computing by Conformational Change (CCC),  
and proposes the following general schema that  

(Computation)=(Self-Assembly)+(Screening Mechanism), 

where “self-assembly” is due to hybridization of either 
uncorded or coded molecular components, while 
“screening mechanism” is regulated by either natural or 
artificial constraint ([2]).   
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3. Chemical Reaction Paradigm

Inspired by the work of reaction systems (initiated by [3]), 
the notion of reaction automata has been introduced in [4] 
by extending sets in each reaction (of a reaction system) 
to multisets. We start this section by reviewing basic 
notions concerning reaction automata.  

For a finite set S,  a  reaction in S is a 3-tuple a = (Ra, 
Ia, Pa) of finite multisets, such that Ra, Pa ∈ S#, Ia ⊆ S 
and Ra∩Ia =, where S# denotes the set of all finite 
multisets over S.  The multisets Ra and Pa are called the 
reactant of a and the product of a, respectively, while the 
set Ia is called the inhibitor of a. These notations are 
extended to a multiset of reactions. A reaction a = (Ra, Ia, 
Pa) is applicable to a multiset D if Ra⊆D and Ia∩ D=. 
As a result, D' (=(D-Ra)∪Pa) is derived.  

With a simple example, we introduce the notion of 
reaction automata. Let us consider a reaction automaton 
(RA) = (S, , A, D0, f) defined as follows: 
S = { p0, p1,a, b, a', f } (symbols of objects),  
={a, b} (input symbols),   
A = {a0,  a1,  a2,  a3, a4 }  (reactions)}, where 
a0 = ( p0, aba', f ),  a1 = ( p0a, b, p0a' ), a2 = ( p0 a'b, , p1 ), 
a3 = ( p1, a'b, a,  p1 ),  a4 = ( p1, aba', f),  
 D0 = p0 (an initial multiset), and f is the final symbol. 

Let w=aabb be a given input string. Since  has the initial 
multiset D0 (=p0), there is no reaction in A applicable to D0. 
When receiving the 1st a of w, the multiset D0 of  becomes 
p0a to which only a1 is applicable and, as a result, D1 (=p0a') is 
derived. On receiving the 2nd a, the multiset of  becomes 
p0a'a from which D2 (=p0a'a') is derived by applying a1. Then, 
receiving b and applying a2 lead D2 to D3 (=p1a'), and on 
receiving the final b,  makes D3 into D4 (=p1) by a3. After 
applying a4, D4 eventually leads to the final multiset f. Thus, an 
input string aabb is accepted by . This example shows a 
successful reaction process of  performed in sequential 
manner and the set of strings thus accepted by  is denoted by 
Lsq( ).  

Figure 3 illustrates an overall view of possible reaction 
processes  in  with inputs anbn for n ≧ 0, and we see 
that    Lsq( ) = { anbn  | n ≧ 0 } which is a context-free
language.  We remark that this interactive process can be 
also performed by  in  maximally parallel manner, i.e. 
in the manner that every applicable reactions are 
performed exhaustively. That is, it holds that 
Lmp( )=Lsq( ).   

Besides both manners of applications in RAs, we often 
consider an extension of the sequential manner where RA 
allows a reaction without receiving any input symbol at 
each step, which is called sequential manner with-input 
mode.  

We investigated the accepting powers of reaction 
automata with these manners of applying reactions, and 
obtained the following. 

Figure 3. A graphic illustration of interactive 
 processes for accepting strings in L={anbn | n ≧ 0}. 

Proposition 2. ([4,5]) The computing power of reaction 
automata in maximally parallel manner coincides with 
that of reaction automata in sequential manner with -
input mode.  Further, both of those computing powers are 
Turing universal. 

On the other hand, the equivalence may not hold for 
reaction automata in sequential manner with ordinary 
input mode (i.e., without the use of -input mode). 

Proposition 3. ([5]) There exists a recursively enumer-
able language which cannot be accepted by any reaction 
automaton in sequential manner.  

In order to study the role of inhibitors of reactions in the 
computing power of RAs, we introduced and studied a 
restricted RA called Chemical Reaction Automaton 
(CRA) in which no inhibitor is allowed ([6]).  

Further, the space complexity issues of reaction 
automata (RAs) have been considered.  By restricting the 
volume (i.e., the state of an RA) used in reaction process 
for a successful computation, some subclasses of RAs 
were introduced and investigated on relations between 
classes of languages accepted by those subclasses of RAs 
and language classes in the Chomsky hierarchy.   

Let f(x) be a function defined on the set of natural 
numbers and X in {sq, mp}.  The workspace of   for  w 
is intuitively defined as the mini-max size of multisets 
(appearing in all reaction sequences) necessary for 
accepting w.  Then, an RA  is said to be f(n)-bounded 
if for any w in LX( ) with n=|w|,  the workspace of  for 
w is bounded by f(n). Then, four classes of RA languages 
have been investigated.  

Suppose that an RA   is f(n)-bounded.  If a function 
f(n) is a constant k (linear, exponential), then  is termed 
constant-(resp. linear-, exponential-) bounded.  The class 
of languages accepted by constant-bounded RAs (linear-
bounded RAs, exponential-bounded RAs, RAs, CRAs) in 
X manner is denoted by               (resp.,             ,        

         ). The class of languages accepted by 
constant-bounded RAs (linear-bounded RAs, 
exponential-bounded RAs, RAs, CRAs) in X manner 
with -input mode is denoted by                (resp.,              , 
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  ,                      ).  
The results on whole view of language class relations 

are summarized in Figure 4,  where       
denotes the class of regular (resp. context-free, context-
sensitive, recursively enumerable) languages in Chomsky 
hierarchy. Further,   denotes the class of languages 
generated by Petri net systems. Thus, except for the 
class      ,  each class in Chomsky hierarchy is exactly 
characterized by a subclass of RA languages.  Further, the 
following result has been obtained. 

Proposition 4. ([6,7]) A language L is in 
if and only if L is a homomorphic 

image of some language in               .  

4. Broader Perspective

Natural computing, (NC) comprises a very broad range 
of computational principles that varies from well-
established classical research areas to newly emerging 
dynamical research areas with great potentiality of many 
promising applications to interdisciplinary fields.  

The former family may include Cellular computation, 
one of the oldest computing models studied since late 
1940s.  In Neural computation, artificial neural networks 
are proposed as computing systems inspired by the 
biological neural networks mimicking brain functions. 
Evolutionary computation provides a bunch of 
algorithms for global optimization strategy inspired by 
biological evolution. Further, Artificial life is a long-
lasting research theme from which artificial immune 
algorithms have been lately developed. As for the latter 
family of research areas in NC, there are quite a few 
topics to be mentioned, while due to the space limit we 
can regretfully name only a part of those emergence of 
fascinating thoughts here:  Membrane computation, 
Reaction-diffusion computation, Optical computation, 
Quantum computation, Swarm intelligence,   etc.  

Further, their applications to practical problems in the 
real world such as drug discovery in “nano-level 
engineering” and “medical/life science” are highly 
recommended to be tackled.   For one example, one may 
refer to a medical application, lately reported, of the use 
of C.elegans for detecting cancer patients.      

Finally, the reader interested in more details about 
topics discussed here and other many subjects in NC is 
cordially advised to consult reference papers or 
appropriate bibliographic sources (such as [8,9,10]).  
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