
Natural Computing Paradigm ─ A Concise Introduction

Takashi Yokomori
Department of Mathematics, Faculty of Education and Integrated Arts and Sciences,

Waseda University, Tokyo 169-8050, Japan
E-mail: yokomori@waseda.jp

Abstract

Natural computing (NC) is an emerging area of research that investigates computing techniques and models inspired
by nature on one hand, and it also investigates phenomena taking place in nature in terms of computational
methodologies on the other hand. Thus, research in NC congenitally has interdisciplinary flavor, which bridges
between computer science and various disciplines of natural science. Because of its interdisciplinary nature, NC
connects and covers a broad spectrum of fundamental research fields including biology, chemistry, physics, medical
science, and so forth. In this article, we give a concise introduction to the new computing paradigm of NC.
Specifically, we give an overview of selected topics of the fields from theory to experiments, where the stress is
primarily put on theoretical achievements in computing paradigms called molecular computing and chemical reaction
computing.

Keywords: Natural computing, molecular computing, self-assembly, chemical reaction computing.

1. Introduction

Natural computing (NC) is a novel computing paradigm
inspired by nature in which NC concerns a variety of
computational aspects and potential features found in
natural phenomena. Also, NC has close relations to
computational process inspired by those phenomena.

The goal of NC includes the following research themes.
(i) From nature to information processing which means
investigating computational mechanism and its
implementation based on lessons from nature, and
(ii) From information processing to nature which means

computational analysis of nature in terms of designing
new computing models and computer experiments
(simulations). Further, NC also intends to exploit new
applications in the fields of various disciplines involved.
It is rather surprising that the conceptual source of the
idea of NC has already appeared in an article of Biofizika
in 1973 where an idea of cell molecular computers was
discussed. Since 1974 Conrad has been conducting
consistent research on the information processing
capability using macro-molecules (such as proteins), and

has edited a special issue in a journal entitled Molecular
Computing Paradigms. His initial efforts in the early days
of molecular computing have been succeeded by Head's

Journal of Robotics, Networking and Artificial Life, Vol. 5, No. 1 (June 2018) 6–9

6

Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

original work on Splicing Systems and Languages
whose theoretical results on splicing phenomena should
be highly appreciated, in that it was the first achievement
by means of mathematical analysis on bio-chemical
operations of DNA recombination. It is possible to
discuss about new computing paradigms inspired by
nature with a general schema of “Computing with X”,
where X ranges from various sorts of materials to those
of principles. Figure 1 illustrates a part of natural
computing paradigms proposed so far within the
“Computing with X” schema.

In this short article, among various computing
paradigms we take up two computing paradigms
“Molecular computing” (from materials), and “Chemical
reaction computing” (from principles), and give an
outline of fundamental results on computing capability of
these new challenging ingenuity.

2. Molecular Computing Paradigm

In the early days, the goal of molecular computing
seemed to replace silicon-based hardware with bio-
molecular one. Unlike this intention of the early schema,
however, by now it is commonly recognized that
molecular computers should explore challenging
applications unsuitable for existing computers.

In the theory of molecular computing, a variety of
computation models have been proposed and investigated.
Among others the models of computation based on self-
assembly are well recognized to be of great importance in
that they can provide one of the most basic
frameworks for molecular computing paradigms. In fact,
Adleman's groundbreaking wet lab experiment [1]
(solving a small instance of the Hamiltonian Path
Problem) is a typical example of molecular computation
based on the self-assembly principle.

When we make a brief revisit to the Adleman's original
work in 1994, it turns out that his algorithm may be
formulated into the schema where component structures
are sophisticatedly encoded into linear molecules. From
these observations, a general schema of “one pot” self-
assembly computation model is outlined as follows:

1. design a finite set of basic units for assembly
computation (one may take this finite set as a
molecular program),

2. put all those basic units with sufficiently high
concentration into one pot, to create a random pool
of a single pot (that is, leave the pot for a certain
time period, resulting in producing all possible
assembly of basic units),

3. (if necessary) perform screening operations to
extract only necessary (or unnecessary) assembly
of basic units,

4. detect whether or not there is an assembly with
desired constraints, then answer yes if there is, and
no otherwise.

Figure 2 illustrates the overview of computation schema
based on self-assembly.

In this section, we will briefly review one of the typical
models based on self-assembly computation, called YAC
model. Based on a unique normal form grammar G
(proposed by Geffert) that can generate any recursively
enumerable language, a computing model YAC has been
proposed, in which an input string and every rule in G
 are translated(encoded) into specific forms of two-
dimensional structural molecules. These basic blocks
(units) of structural molecules with sticky ends are
designed so that they may form a DNA complex linearly
growing by self-assembly property. This means that YAC
performs a simulation of computation (generation) by G,
where the input string is accepted by YAC if and only if
the final DNA complex forms a completely hybridized
double-stranded (that is a desired constraint to be checked
by screening mechanism).
It is shown that any recursively enumerable language can
be recognized by YAC model. Thus, the following holds.

Proposition 1. ([2]) There effectively exists a computing
model based on self-assembly principle whose
computational power is Turing universal.

Other molecular computing models using high-
dimensional structures have been proposed to solve NP-
complete problems such as the satisfiability (SAT)
problem by Jonoska et al., where 3-dimensional graph
structures are used and the algorithm for SAT runs in time
proportional to the number variables involved in a given
formula. On the other hand, Yokomori investigated a
self-assembly computing model in an abstract level,
called Computing by Conformational Change (CCC),
and proposes the following general schema that

(Computation)=(Self-Assembly)+(Screening Mechanism),

where “self-assembly” is due to hybridization of either
uncorded or coded molecular components, while
“screening mechanism” is regulated by either natural or
artificial constraint ([2]).

Journal of Robotics, Networking and Artificial Life, Vol. 5, No. 1 (June 2018) 6–9

7

3. Chemical Reaction Paradigm

Inspired by the work of reaction systems (initiated by [3]),
the notion of reaction automata has been introduced in [4]
by extending sets in each reaction (of a reaction system)
to multisets. We start this section by reviewing basic
notions concerning reaction automata.

For a finite set S, a reaction in S is a 3-tuple a = (Ra,
Ia, Pa) of finite multisets, such that Ra, Pa ∈ S#, Ia ⊆ S
and Ra∩Ia =, where S# denotes the set of all finite
multisets over S. The multisets Ra and Pa are called the
reactant of a and the product of a, respectively, while the
set Ia is called the inhibitor of a. These notations are
extended to a multiset of reactions. A reaction a = (Ra, Ia,
Pa) is applicable to a multiset D if Ra⊆D and Ia∩ D=.
As a result, D' (=(D-Ra)∪Pa) is derived.

With a simple example, we introduce the notion of
reaction automata. Let us consider a reaction automaton
(RA) = (S, , A, D0, f) defined as follows:
S = { p0, p1,a, b, a', f } (symbols of objects),
={a, b} (input symbols),
A = {a0, a1, a2, a3, a4 } (reactions)}, where
a0 = (p0, aba', f), a1 = (p0a, b, p0a'), a2 = (p0 a'b, , p1),
a3 = (p1, a'b, a, p1), a4 = (p1, aba', f),
 D0 = p0 (an initial multiset), and f is the final symbol.

Let w=aabb be a given input string. Since has the initial
multiset D0 (=p0), there is no reaction in A applicable to D0.
When receiving the 1st a of w, the multiset D0 of becomes
p0a to which only a1 is applicable and, as a result, D1 (=p0a') is
derived. On receiving the 2nd a, the multiset of becomes
p0a'a from which D2 (=p0a'a') is derived by applying a1. Then,
receiving b and applying a2 lead D2 to D3 (=p1a'), and on
receiving the final b, makes D3 into D4 (=p1) by a3. After
applying a4, D4 eventually leads to the final multiset f. Thus, an
input string aabb is accepted by . This example shows a
successful reaction process of performed in sequential
manner and the set of strings thus accepted by is denoted by
Lsq().

Figure 3 illustrates an overall view of possible reaction
processes in with inputs anbn for n ≧ 0, and we see
that Lsq() = { anbn | n ≧ 0 } which is a context-free
language. We remark that this interactive process can be
also performed by in maximally parallel manner, i.e.
in the manner that every applicable reactions are
performed exhaustively. That is, it holds that
Lmp()=Lsq().

Besides both manners of applications in RAs, we often
consider an extension of the sequential manner where RA
allows a reaction without receiving any input symbol at
each step, which is called sequential manner with-input
mode.

We investigated the accepting powers of reaction
automata with these manners of applying reactions, and
obtained the following.

Figure 3. A graphic illustration of interactive
 processes for accepting strings in L={anbn | n ≧ 0}.

Proposition 2. ([4,5]) The computing power of reaction
automata in maximally parallel manner coincides with
that of reaction automata in sequential manner with -
input mode. Further, both of those computing powers are
Turing universal.

On the other hand, the equivalence may not hold for
reaction automata in sequential manner with ordinary
input mode (i.e., without the use of -input mode).

Proposition 3. ([5]) There exists a recursively enumer-
able language which cannot be accepted by any reaction
automaton in sequential manner.

In order to study the role of inhibitors of reactions in the
computing power of RAs, we introduced and studied a
restricted RA called Chemical Reaction Automaton
(CRA) in which no inhibitor is allowed ([6]).

Further, the space complexity issues of reaction
automata (RAs) have been considered. By restricting the
volume (i.e., the state of an RA) used in reaction process
for a successful computation, some subclasses of RAs
were introduced and investigated on relations between
classes of languages accepted by those subclasses of RAs
and language classes in the Chomsky hierarchy.

Let f(x) be a function defined on the set of natural
numbers and X in {sq, mp}. The workspace of for w
is intuitively defined as the mini-max size of multisets
(appearing in all reaction sequences) necessary for
accepting w. Then, an RA is said to be f(n)-bounded
if for any w in LX() with n=|w|, the workspace of for
w is bounded by f(n). Then, four classes of RA languages
have been investigated.

Suppose that an RA is f(n)-bounded. If a function
f(n) is a constant k (linear, exponential), then is termed
constant-(resp. linear-, exponential-) bounded. The class
of languages accepted by constant-bounded RAs (linear-
bounded RAs, exponential-bounded RAs, RAs, CRAs) in
X manner is denoted by (resp., ,

). The class of languages accepted by
constant-bounded RAs (linear-bounded RAs,
exponential-bounded RAs, RAs, CRAs) in X manner
with -input mode is denoted by (resp., ,

Journal of Robotics, Networking and Artificial Life, Vol. 5, No. 1 (June 2018) 6–9

8

 ,).
The results on whole view of language class relations

are summarized in Figure 4, where
denotes the class of regular (resp. context-free, context-
sensitive, recursively enumerable) languages in Chomsky
hierarchy. Further, denotes the class of languages
generated by Petri net systems. Thus, except for the
class , each class in Chomsky hierarchy is exactly
characterized by a subclass of RA languages. Further, the
following result has been obtained.

Proposition 4. ([6,7]) A language L is in
if and only if L is a homomorphic

image of some language in .

4. Broader Perspective

Natural computing, (NC) comprises a very broad range
of computational principles that varies from well-
established classical research areas to newly emerging
dynamical research areas with great potentiality of many
promising applications to interdisciplinary fields.

The former family may include Cellular computation,
one of the oldest computing models studied since late
1940s. In Neural computation, artificial neural networks
are proposed as computing systems inspired by the
biological neural networks mimicking brain functions.
Evolutionary computation provides a bunch of
algorithms for global optimization strategy inspired by
biological evolution. Further, Artificial life is a long-
lasting research theme from which artificial immune
algorithms have been lately developed. As for the latter
family of research areas in NC, there are quite a few
topics to be mentioned, while due to the space limit we
can regretfully name only a part of those emergence of
fascinating thoughts here: Membrane computation,
Reaction-diffusion computation, Optical computation,
Quantum computation, Swarm intelligence, etc.

Further, their applications to practical problems in the
real world such as drug discovery in “nano-level
engineering” and “medical/life science” are highly
recommended to be tackled. For one example, one may
refer to a medical application, lately reported, of the use
of C.elegans for detecting cancer patients.

Finally, the reader interested in more details about
topics discussed here and other many subjects in NC is
cordially advised to consult reference papers or
appropriate bibliographic sources (such as [8,9,10]).

Acknowledgements
The work partly supported by Partly supported by JSPS
KAKENHI, Grant-in-Aid for Scientific Research (C)
17K00021 of The Ministry of Education, Culture, Sports,
Science, and Technology, Japan, and by Waseda University
grant for Special Research Project: 2017K-121.

Figure 4. The diagram of the relations among RA
language classes and Chomsky hierarchy. (A solid
arrow denotes a proper inclusion.)

References
1. L. Adleman, Molecular Computation of Solutions to

Combinatorial Problems, Science, vol.266, pp.1021-1024,
1994.

2. T. Yokomori, Computation = Self-assembly + Con-
formational Change: Toward New Computing Paradigms,
Proc. of 4th International Conference on Developments in
Language Theory DLT'99, Aachen, July, pp.21-30, 1999.

3. A. Ehrenfeucht and G. Rozenberg, Reaction systems,
Fundamenta Informaticae vol.75, pp.263-280, 2007.

4. F. Okubo, S. Kobayashi and T. Yokomori, Reaction
Automata, Theore. Comput. Sci., 429, pp.247-257, 2012.

5. F. Okubo, On the Computational Power of Reaction
Automata Working in Sequential Manner, 4th Workshop
on Non-Classical Models for Automata and Applications,
book@ocg.at series 290, pp.149-164, Osterreichische
Computer Gesellschaft, 2012.

6. F. Okubo and T. Yokomori, The Computational
Capability of Chemical Reaction Automata, Natural
Computing, 15, pp.215-224, 2016.

7. F. Okubo, S. Kobayashi and T. Yokomori, On the
Properties of Language Classes Defined by Bounded
Reaction Automata, Theore. Comput. Sci., 454, pp.206-
221, 2012.

8. Gh. Pӑun, G. Rozenberg, A. Salomaa (Eds.), Handbook of
Membrane Computing, Oxford Univ. Press, 2010.

9. G. Rozenberg, T. Bäck and J.N. Kok (eds.), Handbook of
Natural Computing, 4 Volumes, Springer, 2012.

10. M.Hagiya and T.Yokomori (eds), Natural Computing
Series: Vol.0-Vol.7, Kindai Kagaku-sha ， 2011 (in
Japanese)．

Journal of Robotics, Networking and Artificial Life, Vol. 5, No. 1 (June 2018) 6–9

9

