
DSSN model is a qualitative neuronal model designed for efficient implementation in digital arithmetic circuit. In 
our previous studies, we developed automatic parameter fitting method using the differential evolution algorithm 
for regular and fast spiking neuron classes. In this work, we extended the method to cover low-threshold spiking 
and intrinsically bursting. We optimized parameters of the DSSN model in order to reproduce the reference ionic-
conductance model.  
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1. Introduction

The silicon neuronal network is composed of analog and 
(or) digital circuits that solve the differential equations 
of neuronal and synaptic models. Different kinds of 
neuronal models have been used in silicon neuronal 
networks because of the trade-off between 
reproducibility of neuronal activities and computational 
efficiency. For example, Merolla et al.1 constructed a 
digital silicon neuronal network comprising 1 million 
spiking neurons and 256 million synapses. They 
adopted Leaky integrate-and-fire (LIF) model that is 
one of the most commonly used and simple neuron 
models. Thomas et al.2 implemented 1024-spiking 
neurons of Izhikevich (IZH) model3 on a field-
programmable gate array (FPGA). Those LIF, expanded 
LIF, and IZH models are categorized as integrate-and-

fire (I&F) based model which approximates a spiking 
process by the resetting of the state variables. The I&F-
based models can be implemented resource-efficiently, 
but are capable of reduced reproducibility of complex 
neuronal activities. For example, these models assume 
that the amplitude of spikes is fixed, whereas the spike 
intensity is nonuniform in the nervous system. 4 

We have been studying qualitative neuronal models 
for digital as well as analog circuit implementation that 
satisfy both the reproducibility of neuronal activities 
and low computational cost. 5, 6, 7, 8 The core idea of our 
qualitative-modeling-based approach is to reproduce the 
core mathematical structures that a wide variety of 
neuronal activities. In our previous studies, 9, 10 we 
extended the DSSN models7 to support various neuronal 
classes; regular spiking (RS), fast spiking (FS), 
intrinsically bursting (IB), low-threshold spiking (LTS), 
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elliptic bursting (EB), and parabolic bursting (PB). We 
also studied an automatic parameter fitting method 
using the differential evolution (DE) algorithm11 for the 
RS and FS classes. 12 

In this work, we developed the method for the low-
threshold spiking and intrinsically bursting classes. 
Parameters were optimized to reproduce waveforms of 
the ionic-conductance models in Ref. 13 and reduce the 
circuit resource requirements for implementation. 

The remainder of this paper is organized as follows. 
Section 2 introduces our neuron model, the DE 
algorithm, and details of our parameter optimization 
procedure. The result is shown in Section 3. Section 4 
summarizes this work and suggests ideas for the future. 

2. Method

2.1.  Digital Spiking Silicon Neuron model 

The 4-variable DSSN model is a qualitative neuron 
model that can simulate various neuronal classes (RS, 
FS, IB, LTS, EB, and PB) by Euler's method with fixed 
point operation. Its equations are given by 
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where ݒ  corresponds to the membrane potential. 
Variables ݊ and ݍ are the fast and slow variables which 
abstractly describe the activity of the fast and slow ion 
channels, respectively. Variable ݑ  is the slowest 
variable that modifies the structure of the fast subsystem 
comprising v and n, and used in only the IB mode. In 
the RS, FS, and LTS modes, ݑ is fixed. Parameter ܫ଴ is a 

constant and ܫ௦௧௜௠  represents the input stimulus. 
Parameters ∅଴ , ∅ଵ , ∅ଶ , ε ௨ߝ , , and τ  control the time 
constants of the variables. Parameters, ݎ௚, ݎ௛, ݒ௨, ߙ௨ ܽ௫, 
ܾ௫ , and ܿ௫ , where ݔ  is ݂݊,	݂,݌	,݊݃	݌݃,	݄݊, or ݄݌, are 
constants that adjust the shape of the  ݍ,-݊ ,-ݒ- and ݑ-
nullclines. Parameters ݎ௨଴  and ݎ௨ଵ  are used to select ∅ 
depending on ݑ. All of the variables and constants in 
this qualitative model are purely with no physical unit. 
Cubic shaped ݒ -nullcline is a key to replicate the 
spiking dynamics. Because multipliers are resource-
consuming in a digital arithmetic circuit, the DSSN 
model adopts a piecewise quadratic function for the ݒ-
nullcline so that its numerical integration step requires 
only one multiplication between variables. 

2.2.  Differential evolution algorithm 

The DE algorithm11 is a popular heuristic method to 
solve optimization problems using a real number 
function. It is one of the population-based optimization 
algorithms in which a number of parameter sets are 
converged to quasi-optimal solutions with which the 
DSSN model reproduces the target waveform. The 
initial random parameter sets have to be selected 
carefully so that the behavior of the DSSN model does 
not diverge. Detailed explanation is written in the 
previous study. 12  

2.3.  Parameter optimization procedure 

The LTS class neurons are found in the thalamus. It has 
the spike-frequency adaptation as with the RS class, and 
has the rebound bursting; neurons in the LTS class 
generate a burst firing just after the termination of a 
sufficiently strong and long hyperpolarizing stimulus. 
The IB class is a well-known bursting neuron class in 
the cortex. Neurons in the IB class generate a burst 
firing immediately at the onset of a sufficiently strong 
stimulus, then continue spiking until its termination.  

The DSSN model has 28 parameters, and exploring 
their spanning space is not realistic for the computers 
with average power. To avoid this problem, we divided 
the state variables of the DSSN model into two groups 
based on their time scale, and tuned each group in 
sequence. In our previous study, 12 the RS and FS  
classes were characterized as the degree of spike-
frequency adaptation, and we just optimized parameters 
of fast state variables in order to reproduce the saddle- 
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Fig. 1. Waveforms of the ionic-conductance model (red) and 
the DSSN model (blue) of the LTS class in response to an 
inhibitory (top) and weak excitatory (middle) and strong 
excitatory (bottom) step stimulus input. 

node on invariant circle bifurcation. However, LTS and 
IB classes have more complex structure in their fasts 
subsystem. For the LTS class, we firstly explored the 
parameter group responsible for the dynamics of the fast 
state variables ݒ	and	݊ so that the fast subsystem of our 
model is consistent with that of the ionic conductance 
model of the LTS class. Then, the parameters related to 
the slow state variable ݍ  were determined so that the 
dynamical behavior of the whole ionic conductance 
model of the LTS class is reproduced. For the IB class, 
we firstly fitted the parameters responsible for the 
dynamics of the state variables ݒ, ݊, and ݍ so that the 
dynamical behavior of the corresponding subsystem in 
the ionic conductance model of the IB class is 
reproduced. Then, the parameters related to the 
remaining variable ݑ  were determined so that the 
dynamical behavior of the whole ionic conductance 
model of the IB class is reproduced. 

Fig. 2. Waveforms of the ionic-conductance model (red) and 
the DSSN model (blue) of the IB class in response to a weak 
(top) and middle (middle) and strong (bottom) excitatory step 
stimulus input. 

In the DSSN model’s circuit implementation, 
multiplication between a coefficient and a state variable 
was realized by shifters and adders, and we needed a 
larger number of adders and shifters as the number of 
digits with value 1 in the fixed point representation of 
the coefficient increases. Parameters were optimized for 
not only reproducing waveforms of the ionic-
conductance model but also reducing the circuit size. 
We defined the cost functions ଵ݂ and ଶ݂as follows, 

ଵ݂ሺݔሻ ൌ ௪݂ଵሺݔሻ ൅ ݇௕ଵ ௕݂ଵሺݔሻ, (9) 

ଶ݂ሺݔሻ ൌ ௪݂ଶሺݔሻ ൅ ݇௕ଶ ௕݂ଶሺݔሻ, (10) 

where ୵݂ሺݔሻ is the function that calculates cost from the 
target waveforms of the ionic conductance model and 
the DSSN model with parameter vector ݔ, based on the 
difference of spike timing as well as the mean square 
error of the state variable corresponding the membrane 
potential. In this function, minimum and maximum 
values of waveforms are normalized to 0 and 1 for 
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comparison. Function ௕݂  is a number of digits with 
value 1 in the binary fixed-point expression of the 
coefficients in ݔ . Constant ݇௕  is to balance these two 
cost functions. Parameters responsible for the dynamics 
of the fast variables were determined to minimize the 
cost function ଵ݂,ଶ using the DE algorithm. 
In the LTS class, parameters related to state variables 
݊	and	ݒ  were firstly determined to minimize the cost 
function ଵ݂. Then the slow state variables are fixed in 
the ionic conductance model, which is used as the target 
waveforms in the ௪݂ଵ . Secondly, the remaining 
parameters related to the slow variable ݍ  were 
determined to minimize the cost function ଶ݂ . The 
original ionic conductance model is used in the ௪݂ଶ. In 
the IB class, parameters related to state variables ݒ, ݊, 
and ݍ	  were firstly determined to minimize the cost 
function ଵ݂. Secondly, the remaining parameters related 
to the slowest variable ݑ were determined to minimize 
the cost function ଶ݂. 

3. Result

We found two parameter sets with which the DSSN 
model reproduces the activities of the ionic-conductance 
models for LTS and IB classes (Fig. 1). We evaluated 
the similarity of the spiking patterns between the ionic-
conductance model and the DSSN model by calculating 
some statistics while changing the stimulus intensity 
(Fig. 3). For the LTS class, we used ܥ௏  and ܮ௏ 14 and 
these are explained in our previous study. 12 Our fitted 
model’s ܥ௏ െ ௏ܮ characteristics are not completely the 
same as that of the reference model, but share the trend 
that ܥ௏  and ܮ௏  decreases as the stimulus intensity 
increases. For the IB class, we measured the number of 
spikes in the bursting duration and average firing rate 
after the bursting. With both models, the number of 
spikes in the bursting duration increases linearly as the 
average firing rate increases, although the exact value 
does not coincide completely. The similarity of these 
characteristics will be further estimated based on the 
requirements specified by the circuits' applications. 

The results in Figs. 1, 2, and 3 were obtained by 
numerical integration with fixed-point operation and the 
Euler's method (݀ݐ ൌ 2ିଵଷ s) in C language. The same 
results are expected to be observed in the following 
FPGA implementation, because this condition is the 
same as our VHDL codes. We compiled the DSSN 
models for Xilinx XC7VX690T using Xilinx Vivado  

Fig. 3. Statistical properties of the ionic-conductance model 
(red) and the DSSN model (blue). In the LTS mode (left), the 
x−axis and y-axis are ܥ௏ and ܮ௏. In the IB mode (right), x-
axis corresponds to the number of spikes in the bursting and y-
axis corresponds firing rate after the bursting. 

Table. 1 : Device Utilization. 

Design Suite. Device utilization is listed in Table 1. In 
the column labeled LTS (hand-fitted) and IB (hand-
fitted), the resource usage for LTS and IB settings in 
Ref. 9 is shown. The requirement for LUTs was reduced 
without any loss of the reproducibility of the neuronal 
activities. 

4. Conclusion

In this work, we extended the parameter optimization 
method for the DSSN model in the LTS and IB class 
modes. These classes have complex mathematical 
structures of the fast subsystem, thus we carefully 
designed our fitting procedure in order to reproduce 
important structures in these classes. We could find 
parameter sets with which the DSSN model reproduces 
the characteristics activities of LTS and IB classes using 
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average-power PC ( a Xeon E5-2667 CPU with a 
NVIDIA P100 GPU ). Cost functions ௕݂௫ were 
introduced to reduce the necessary circuit size. We 
confirmed that the DSSN model with determined 
parameter set can precisely reproduce the ionic 
conductance model in C simulation, and the necessary 
circuit size was simulated by Xilinx Vivado Design 
Suite. In our future work, we will apply our silicon 
neuronal networks to the spike pattern recognition. 15 
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