
Tracking/Robust Trade-off Design of a Sampled-data PID Controller for Second-order Plus 
Dead-time Systems 

Ryo Kurokawa and Takao Sato 

Department of Mechanical Engineering, University of Hyogo 
2167 Shosha, Himeji, Hyogo 671-2280 Japan  

E-mail: tsato@eng.u-hyogo.ac.jp

Ramon Vilanova 

Department of Telecommunications and Systems Engineering, Universitat Aut𝑜̀nomade Barcelona 
Edifici Q-Campus de la UAB, 08193 Bellaterra, Barcelona, Spain 

E-mail: ramon.vilanova@uab.cat

Yasuo Konishi 

Department of Mechanical Engineering, University of Hyogo 
2167 Shosha, Himeji, Hyogo 671-2280 Japan  

E-mail: konishi@eng.u-hyogo.ac.jp

Abstract 

In this paper, we propose a new design method of a second-order plus dead-time (SOPDT) sampled-data Proportional-
Integral-Derivative (PID) control system, where the continuous-time plant is controlled using the discrete-time 
controller. The proposed control system is designed so that the tracking performance is optimized subject to the 
stability margin constraint. In the present study, the servo and regulation optimal controllers are designed. Finally, 
the effectiveness of the proposed method is demonstrated through numerical examples. 
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1. Introduction

Proportional-Integral-Derivative (PID)1,2 control has 
been widely used in industry. Since the performance of 
PID control depends on the tuning parameters, additional 
tuning methods have been studied recently. Although the 
stability of a control system is critical, its tracking 
performance is also important. However, because of the 
trade-off relationship between stability and tracking 
performance, they cannot be optimized simultaneously. 
Arrieta and Vilanova3,4 proposed a simple PID tuning 
method that optimizes the tracking performance subject 

to a prescribed robust stability. In this method, the 
optimal PID parameters are decided based on a first-order 
plus dead-time (FOPDT) continuous-time system. In 
order to design a discrete-time control system, Tajika et 
al.5 proposed a design method for controlling a discrete-
time FOPDT system. The present study discusses a 
design method of the PID controller for controlling a 
second-order plus dead-time (SOPDT) system, in which 
the continuous-time plant is controlled using the discrete-
time controller. In the proposed method, both servo and 
regulation optimized control methods are designed. 
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Finally, the effectiveness of the proposed method is 
demonstrated through numerical examples.

2. Description of the Control System

Consider the continuous-time controlled plant given as 
follows: 

𝑃ሺ𝑠ሻ ൌ
𝐾𝜔௡

ଶ

𝑠ଶ ൅ 2𝜁𝜔௡𝑠 ൅ 𝜔௡
ଶ 𝑒ି௅௦ (1) 

where 𝐾  is the plant gain, 𝜔௡  is the natural angular 
frequency, 𝜁  is the damping coefficient, and 𝐿 is the 
dead-time. In the present study, we discuss the design 
method of the sampled-data control system using the 
following discrete-time PID control law:  

𝑢ሺ𝑘ሻ ൌ 𝐶௘ሺ𝑧ିଵሻ𝑒ሺ𝑘ሻ ൅ 𝐶௬ሺ𝑧ିଵሻ𝑦ሺ𝑘ሻ (2)

𝐶ௗሺ𝑧ିଵሻ ൌ 𝐶௘ሺ𝑧ିଵሻ ൅ 𝐶௬ሺ𝑧ିଵሻ 

𝐶௘ሺ𝑧ିଵሻ ൌ 𝐾௣ ൜1 ൅
𝑇௦

𝑇௜ሺ1 െ 𝑧ିଵሻ
ൠ

𝐶௬ሺ𝑧ିଵሻ ൌ 𝐾௣ ቊ
𝑇ௗሺ1 െ 𝑧ିଵሻ

𝑇௦
ቋ 

where 𝑢ሺ𝑘ሻ  is the control input, 𝑦ሺ𝑘ሻ  is the plant 
output, 𝑒ሺ𝑘ሻ൫ൌ 𝑟ሺ𝑘ሻ െ 𝑦ሺ𝑘ሻ൯ is the control error, and 
𝑟ሺ𝑘ሻ is the reference. Moreover, 𝑇௦ , 𝐾௣ , 𝑇௜ , and 𝑇ௗ 

are the sampling time, the proportional gain, the integral 
time, and the differential time, respectively. 

3. Definition of the Optimization Problem

As the constraint condition, the stability margin is 
defined using the sensitivity function, and the evaluation 
function for the tracking performance is also defined.  

3.1. Constraint condition 

The sensitivity function 𝑆௙ሺ𝑧ିଵሻ is defined as follows: 

𝑆௙ሺ𝑧ିଵሻ ൌ
1

1 ൅ 𝐶ௗሺ𝑧ିଵሻ𝑃ௗሺ𝑧ିଵሻ
 (3) 

where 𝑃ௗሺ𝑧ିଵሻ  is the discrete-time controlled plant. 
Using the sensitivity function, the constraint condition is 
defined as follows:  

|𝑀௦ െ 𝑀௦
ௗ| ൌ 0 (4) 

𝑀௦ ൌ max
ఠ

ห𝑆௙ሺ𝑒ି௝ఠሻห 

where 𝑀ୱ  is the maximum value of the sensitivity 
function, and 𝑀௦

ௗ  is the desired value selected by the 
designer. The recommended range of 𝑀௦

ௗ is from 1.4 to 
2.01. The smaller the value of 𝑀௦, the larger the stability 
margin. On the other hand, the larger the value of 𝑀௦, 
the better the tracking performance, although the stability 
margin becomes small.  

3.2. Evaluation function 

In the present study, the evaluation function 𝐽 is defined 
as the integral absolute error: 

𝐽 ൌ ෍|𝑒ሺ𝑘ሻ|
ஶ

௞ୀ଴

ൌ ෍|𝑟ሺ𝑘ሻ െ 𝑦ሺ𝑘ሻ|
ஶ

௞ୀ଴

 (5) 

A trade-off relationship exists between the servo 
performance and the regulation performance. In the 
present study, the PID parameters are optimized for the 
servo and regulation control, respectively. 

4. Controller Design

The PID parameters are optimized for a normalized 
system, and hence, dimensionless parameters are defined 
as 𝜏 ൌ 𝐿𝜔௡ , ℎ ൌ 𝑇௦𝜔௡ , 𝜅௣ ൌ 𝐾௣𝐾 , 𝜏௜ ൌ 𝑇௜𝜔௡ , and 

𝜏ௗ ൌ 𝑇ௗ𝜔௡ . The range of these parameters are set as 
0.1 ൑ 𝜏 ൑ 1.0, 0.01 ൑ ℎ ൑ 0.10, and 0.3 ൑ 𝜁 ൑ 1.2. 
In the proposed method, the constrained optimal problem 
is preliminarily solved for a designated finite plant, 
which is defined by discrete 𝜏, ℎ, and 𝜁, and the data set 
in which the optimal normalized PID parameters for 
discrete 𝜏, ℎ, and 𝜁, is obtained. In Fig. 1, the obtained 
normalized PID parameters are plotted by ∘, where 
𝑀௦

ௗ ൌ 1.4 and 𝑇௦ ൌ 0.01.  
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The desired normalized PID parameters for an arbitrary 
plant are decided by the linear interpolation from the data 
set. Practically speaking, the interpolated parameters are 
calculated using the nearest four points, as shown in Fig. 
2. From this figure, the vector equation is obtained as
follows:

OPሬሬሬሬሬ⃗ ൌ 𝛼OAሬሬሬሬሬ⃗ ൅ 𝛽OBሬሬሬሬሬ⃗ ൅ 𝛾OCሬሬሬሬሬ⃗  (6) 

0 ൑ 𝛼 ൑ 1 

0 ൑ 𝛽 ൑ 1 

0 ൑ 𝛾 ൑ 1 

where point O [𝜏୓, 𝜁୓, ℎ୓, 𝜅௣
୓, 𝜏௜

୓, 𝜏ௗ
୓], A [𝜏୅, 𝜁୅, 

ℎ୅, 𝜅௣
୅ , 𝜏௜

୅, 𝜏ௗ
୅], B [𝜏୆, 𝜁୆, ℎ୆, 𝜅௣

୆ , 𝜏௜
୆, 𝜏ௗ

୆], and C 
[𝜏େ, 𝜁େ, ℎେ, 𝜅௣

େ, 𝜏௜
େ, 𝜏ௗ

େ] are the nearest points of the 

desired [𝜏୔ , 𝜁୔ , ℎ୔ ]. Then, Eq. (6) is rearranged as 
follows:   

𝜅௣
୔ ൌ 𝜅௣

୓ ൅ 𝛼൫𝜅௣
୅ െ 𝜅௣

୓൯ ൅ 𝛽൫𝜅௣
୆ െ 𝜅௣

୓൯ ൅ 𝛾൫𝜅௣
େ െ 𝜅௣

୓൯ 
𝜏௜

୔ ൌ 𝜏௜
୓ ൅ 𝛼൫𝜏௜

୅ െ 𝜏௜
୓൯ ൅ 𝛽൫𝜏௜

୆ െ 𝜏௜
୓൯ ൅ 𝛾൫𝜏௜

େ െ 𝜏௜
୓൯ 

𝜏ௗ
୔ ൌ 𝜏ௗ

୓ ൅ 𝛼൫𝜏ௗ
୅ െ 𝜏ௗ

୓൯ ൅ 𝛽൫𝜏ௗ
୆ െ 𝜏ௗ

୓൯ ൅ 𝛾൫𝜏ௗ
େ െ 𝜏ௗ

୓൯ 

Solving these equations, the desired 𝜅௣
୔, 𝜏௜

୔, and 𝜏ௗ
୔ for 

[𝜏୔, 𝜁୔, ℎ୔] are obtained, where α, β, and γ are decided 
based on the following equations:  

𝜏୔ െ 𝜏୓ ൌ 𝛼ሺ𝜏୅ െ 𝜏୓ሻ ൅ 𝛽ሺ𝜏୆ െ 𝜏୓ሻ ൅ 𝛾ሺ𝜏େ െ 𝜏୓ሻ 
𝜁୔ െ 𝜁୓ ൌ 𝛼ሺ𝜁୅ െ 𝜁୓ሻ ൅ 𝛽ሺ𝜁୆ െ 𝜁୓ሻ ൅ 𝛾ሺ𝜁େ െ 𝜁୓ሻ 

ℎ୔ െ ℎ୓ ൌ 𝛼ሺℎ୅ െ ℎ୓ሻ ൅ 𝛽ሺℎ୆ െ ℎ୓ሻ ൅ 𝛾ሺℎେ െ ℎ୓ሻ 

In Fig. 1, the interpolated parameters are plotted over the 
discrete calculated optimal parameters. Furthermore, 𝑀௦ 
is calculated for both the preliminarily solved and 
interpolated systems using the approximation method, 
and the obtained 𝑀௦ values are shown in Table 1. This 
result reveals that the proposed decision method is 
sufficiently effective.  

Table 1.  Obtained  𝑀௦ 

Servo design Regulation design 

𝑀௦
ௗ Min Mean Max Min Mean Max 

1.4 1.398 1.403 1.440 1.399 1.403 1.453 

1.6 1.599 1.605 1.668 1.597 1.605 1.663 

1.8 1.790 1.807 1.909 1.798 1.807 1.897 

2.0 1.996 2.010 2.156 1.997 2.009 2.137 

Fig. 1.  Relationships among 𝜏, 𝜁, and 𝜅௣, 𝜏௜ and 𝜏ௗ (servo 
design, 𝑀௦

ௗ ൌ 1.4 and 𝑇௦ ൌ 0.01) 

Fig. 2.  Image of the linear interpolation 
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5. Numerical Simulation

In this section, the effectiveness of the proposed method 
is confirmed. 

5.1. Control performance for various values of 𝜻 

First, the control performance is confirmed for 𝜁. The 
controlled plant is defined as 𝐾 ൌ 4.2, 𝜔௡ ൌ 1.13, and 
𝐿 ൌ 0.44 in Eq. (1), and 𝑇௦ ൌ 0.018. Here, we consider 
four pattern damping coefficients: 𝜁ଵ ൌ 0.451 , 𝜁ଶ ൌ
0.69, 𝜁ଷ ൌ 1.0, and 𝜁ସ ൌ 1.199. The control results are 
shown in Fig. 3. The reference value is set to 1.0, and the 
unit step disturbance signal is added after 20 s. Figure 3 
shows that the proposed method is effective for under- 
and over-damping systems.  

5.2. Verification of stability margin 

Next, the stability margin is confirmed. Here, the 
controlled plant is defined as 𝐾 ൌ 2.02 , 𝜔௡ ൌ 0.91 , 
𝜁 ൌ 0.33 , and 𝐿 ൌ 0.98  in Eq. (1), and 𝑇௦ ൌ 0.05 . 
After 40 s, the dynamics is changed to 𝐾 ൌ 2.6, 𝜔௡ ൌ

1.3 , 𝜁 ൌ 0.43 , and 𝐿 ൌ 0.43  as the model variation. 
Furthermore, 𝑀௦

ௗ  is varied as 1.4, 1.6, 1.8, and 2.0, 
respectively, and the control results are compared. The 
obtained results are shown in Fig. 4. The reference value 
is 1.0, and the unit step disturbance signal is added after 
20 s. The model variation is caused at 40 s. Figure 3 
shows that the smaller the value of 𝑀௦

ௗ , the larger the 
stability margin, and vice versa. On the other hand, the 
larger the value of 𝑀௦

ௗ , the better the tracking 
performance, and vice versa.  

Conclusion 

In the present study, we have proposed a new design 
method for controlling an SOPDT sampled-data system, 
where the continuous-time plant is controlled by the 
discrete-time PID control law. In the proposed method, 
the PID parameters are designed for the normalized 
system, and the tracking performance is optimized 
subject to the assigned𝑀௦

ௗ. Finally, the effectiveness of 
the proposed method is demonstrated through numerical 
examples.  
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