
Genetic Algorithm-Based Technique and Tool
for Generating Mutants of Extended Place/Transition Nets

Tomohiko Takagi
Faculty of Engineering and Design, Kagawa University

2217-20 Hayashi-cho, Takamatsu-shi, Kagawa 761-0396, Japan

Shogo Morimoto
Graduate School of Engineering, Kagawa University

2217-20 Hayashi-cho, Takamatsu-shi, Kagawa 761-0396, Japan
E-mail: takagi@eng.kagawa-u.ac.jp, s17g483@stu.kagawa-u.ac.jp

Abstract

An EPN (Extended Place/transition Net) is used as a formal model that represents the behavior of software. When
mutation testing is performed based on the EPN, failures are intentionally inserted into an original EPN (EPN that
represents the expected behavior of software) in order to create mutant EPNs. A large number of higher-quality
mutant EPNs are needed to expect the higher degree of accuracy for a mutation score, but the techniques to generate
them have not been established. To address this problem, we construct a technique to generate mutant EPNs, and
develop a tool to support the technique. In this technique based on a genetic algorithm, a set of mutant EPNs
corresponds to a chromosome, and the fitness of each chromosome is evaluated based on an original EPN weighted
by metrics. This paper shows the procedure of this technique, the functions of the tool, and the discussion about its
effectiveness.

Keywords: Mutation Testing, Model-Based Testing, Place/Transition Net, Genetic Algorithm

1. Introduction

An EPN (Extended Place/transition Net) is a
place/transition net that includes actions and guards
written in a specification description language of VDM
(Vienna Development Method),1 and it is used as a
formal model to represent the relatively detailed behavior
of software. When model-based mutation testing2 is
performed based on the EPN, failures are intentionally
inserted into an original EPN (EPN that represents the
expected behavior of software) in order to create mutant
EPNs, and then a test suite (a set of test cases) to be
evaluate is executed on the mutant EPNs.3-5 The ratio of
killed mutant EPNs (mutant EPNs whose failures were
detected by the test suite) to all of the created mutant
EPNs is called a mutation score, and it gives test

engineers a measurement of the quality of the test suite.
A large number of higher-quality mutant EPNs are
needed to expect the higher degree of accuracy for a
mutation score.

In our previous study,5 we developed a tool to
construct an original EPN, construct mutant EPNs,
execute a test suite, calculate a mutation score, and so on.
However, the systematic techniques to generate higher-
quality mutant EPNs had not been established. The tool
provided only two simple ways to construct mutant EPNs,
that is, the way to generate mutant EPNs at random by
use of model-based mutation operators, and the way to
construct mutant EPNs by manual application of model-
based or code-based mutation operators.

To address this problem, we construct a technique to
generate better mutant EPNs, and develop a tool to

Journal of Robotics, Networking and Artificial Life, Vol. 5, No. 2 (September 2018) 122-127

122

Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

support the technique. In this technique based on a GA
(Genetic Algorithm), a set of mutant EPNs corresponds
to a chromosome (an individual), and the fitness of each
chromosome is evaluated based on an original EPN
weighted by metrics. Test engineers can select suitable
metrics for the evaluation, that is, can define the meaning
of "quality of mutant EPNs".

The rest of this paper is organized as follows. In
section 2, we propose a technique to generate better
mutant EPNs. Section 3 shows the functions of the tool
to support the proposed technique. Section 4 gives the
discussion about the effectiveness of the tool, and finally
section 5 shows a conclusion and future work.

2. Mutant EPN Generation Technique

In this section, we propose a GA-based technique to
generate better mutant EPNs.

2.1. Overview of the way to address problems

A mutant EPN is an EPN that includes an intentional
failure, and it is created by applying one or more mutation
operators to an original EPN that test engineers had
constructed based on specifications of SUT (Software
Under Test). The mutation operators can be broadly
classified into model-based ones3 and code-based ones.
The combination of the mutation operators and the parts
of the original EPN to be mutated brings astronomical
numbers of possible mutant EPNs, and therefore they
should be selected based on quality. However, it is not
obvious (a) how to evaluate the quality of mutant EPNs,
and (b) how to apply mutation operators in order to
generate high-quality mutant EPNs.

In this study, we introduce weights4 into an original
EPN in order to address (a). The weights are values
between 0.0 and 1.0 that represent fault-proneness and
the impact on software reliability. They are calculated
based on metrics relating to usage distribution,
complexity, and test execution history, and then are given
to each transition of an original EPN. It is assumed that a
good mutant EPN includes an intentional failure relating
to a highly-weighted transition, and the quality of mutant
EPNs can be evaluated based on the weights.

The weights are calculated by the following steps.
(i) Test engineers select metrics suitable for SUT, and

then gather materials for evaluation of the metrics.
(ii) Test engineers define the relationships between the

original EPN and the materials.

(iii) The metrics are evaluated based on the materials.
(iv) According to the results of (ii), the results of (iii) are

given to each transition of the original EPN, and then
they are converted to values between 0.0 and 1.0.

A simple example of an original EPN with weights is
shown in Fig. 1. It consists of three places (p1, p2, and p3),
three transitions (t1, t2, and t3), and eight arcs. There is a
token on p1. Each transition has a guard, an action, and
three weights, since three kinds of metrics have been
selected. For example, t1 has "v<10" as a guard, "v:=v+2;"
as an action, and "0.42, 0.21, 0.07" as weights.

Also, we introduce a GA into our mutant EPN
generation technique in order to address (b). The GA is a
well-known metaheuristic approach that imitates natural
selection, and it is suitable to solve a problem in which it
is difficult to formulate equations and get a best solution
within reasonable time and cost. In our technique, a set
of mutant EPNs corresponds to a chromosome, and the
fitness of each chromosome is evaluated based on an
original EPN weighted by metrics. Chromosomes with
higher fitness tend to remain in next generation (and thus
tend to take part in producing offspring). Finally a
chromosome with highest fitness is selected as a solution.
The detailed procedure of this GA-based technique is
shown in the next section.

2.2. Procedure of the GA-based technique

The procedure of our GA-based technique to generate
mutant EPNs consists of the following six steps.
(i) An initial population is generated for the first

generation. The population consists of Nc (Nc≥2)
chromosomes, and each chromosome consists of Ng

(Ng≥2) genes. A chromosome represents a set of

Fig. 1. Example of an original EPN with weights.

Complete VDM specifications

class EPN

instance variables
public v : nat := 0;

operations
public t1: () ==> ()
t1() ==
v := v + 2

pre v < 10;

public t2: () ==> ()
t2() ==
v := v - 1

pre v > 5;

public t3: () ==> ()
t3() ==
v := v - 1;

end EPN

[v<10] / v:=v+2;t1

t2

t3

p1

p2

p3

[v>5] / v:=v−1;

[true] / v:=v−1;

0.42, 0.21, 0.07

0.54, 0.97, 0.22

0.33, 0.32, 0.16

123

Journal of Robotics, Networking and Artificial Life, Vol. 5, No. 2 (September 2018) 122-127

mutant EPNs (that is, a candidate solution). Ng is the
number of genes, that is, the number of mutant EPNs
that test engineers need for the evaluation of a
mutation score. Each gene is generated by applying
a mutation operator to an original EPN. A mutation
operator to be used is randomly selected based on a
uniform distribution, and a part of the original EPN
to be mutated is randomly selected according to a
distribution of weights.

(ii) In order to generate new chromosomes (that is,
offspring), mutation and crossover as genetic
operators are applied to the existing chromosomes
(that is, parents) in the population of current
generation.
In mutation, chromosomes are randomly selected
with a mutation probability pm (0.0≤pm≤1.0), and
then genes are randomly selected with pm in the
selected chromosomes. The selected genes are
replaced with new genes that are generated by the
same way as (i). In crossover, chromosomes are
randomly selected with a crossover probability pc

(0.0≤pc≤1.0) in order to make pairs, and then genes
between randomly selected cut positions are
exchanged in a copy of each pair. Fig. 2 shows a
simple example of crossover in Ng=5. cx (x=1, 2, ⋯,
4) and gy (y=1, 2, ⋯, 10) represent chromosomes and
genes, respectively. c1 and c2 are selected as parents.
Crossover is applied to the pair of c1 and c2, and new
chromosomes c3 and c4 are generated by exchanging
the genes between cut positions (that is, g3, g4, g8,
and g9).
Finally, new chromosomes are added to the
population of current generation.

(iii) Fitness of each chromosome in the population of
current generation is evaluated by the following
equation.

fitness(c)= ෍ impi∙evali(c)

M

i=1

 (1)

In Eq. (1), c is a chromosome to be evaluated, M
(M≥1) is the number of kinds of metrics that test
engineers introduced to calculate weights, impi
expresses the degree of importance of ith metrics,
and satisfies the following.

൞
෍ impi

M

i=1

=1.0

0.0≤impi≤1.0 , (i=1, 2, ⋯, M)

 (2)

evali(c) in Eq. (1) expresses the result of evaluating
ith metrics in c, and it is defined as follows.

evali(c)=
∑ ቄweighti, j∙(1 െ 2ିnum(c, j))ቅT

j=1

∑ weighti, j
T
j=1

 (3)

In Eq. (3), T is the number of transitions of the
original EPN, weighti, j is a value of a weight given
by ith metrics on jth transition, and num(c, j)
expresses the number of genes of c in which jth
transition and/or its ingoing/outgoing arc(s) are
mutated. If equivalent mutant EPNs are detected in
c, they are ignored on the calculation of num(c, j).

(iv) If the number of alternation of generations reaches G
(G≥1), a chromosome with the highest fitness
through all generations is selected as a final solution,
and the procedure of this technique is terminated.

(v) Nc chromosomes that the initial population of next
generation consists of are selected from the
population of current generation. To be precise, two
chromosomes are randomly selected based on a
uniform distribution from the population of current
generation, and their fitness are compared. Then one
with higher fitness is selected and is moved to the
population of next generation, and another is
returned to the population of current generation.
These are repeatedly performed until the number of
the population of next generation reaches Nc.

(vi) Generation is changed, and then the procedure of this
technique returns to (ii).

3. Functions of a Tool for Mutant EPN
Generation

We have developed a tool for EPN-based mutation
testing. This section shows the functions of the tool to
support the proposed technique.

The tool includes (a) a function to construct an
original EPN, (b) a function to generate mutant EPNs, (c)
a function to execute a test suite on mutant EPNs and

Fig. 2. Example of crossover.

124

Journal of Robotics, Networking and Artificial Life, Vol. 5, No. 2 (September 2018) 122-127

calculate its mutation score. (a) and (c) had already been
implemented and discussed in our previous study,5 and
therefore we concentrate on the implementation of (b) in
this study. (b) includes two new sub-functions, that is, a
sub-function to calculate weights based on metrics, and a
sub-function to generate better mutant EPNs by the GA-
based technique.

3.1. Weight calculation sub-function

As already discussed in section 2.1, we introduce weights
into an original EPN, and our tool provides a sub-
function to calculate weights based on metrics. Fig. 3
shows a screen shot of our tool (a main window) that is
executing the sub-function. Its GUI (Graphical User
Interface) consists of (A) a pane to start calculation and
output the results, (B) a pane to select materials for the
evaluation of metrics, and (C) a pane to show an original
EPN with weights.

A user of our tool, that is, a test engineer first selects
materials by using (B). (B) consists of three tab pages that
specialize in materials relating to usage distribution,
complexity, and test execution history, respectively. For
example, in Fig. 3, an access log file of Apache is
selected in order to evaluate usage distribution of a Web
application to be tested. Keywords of actions that appear
in the selected access log file are automatically extracted
based on a specified log format, and a test engineer
defines the relationship between the actions and the
transitions of an original EPN.

After selecting materials, a test engineer pushes a
button to start calculation on (A), and then confirms its
results on (C). In Fig. 3, weights based on usage
distribution, complexity, and test execution history are
displayed in blue, red, and green characters, respectively.
The usage distribution was measured by REET (Ratio of
the frequency of Executing Each Transition). The
complexity was given by 1.0−MI/100, where MI means a
maintainability index. The test execution history was
evaluated by RFTC (Rate of the frequency of Failing Test
Cases).

If there are no problems on the results, a test engineer
pushes an output button on (A) in order to generate an
XML (eXtensible Markup Language) file of an original
EPN with weights.

3.2. Mutant EPN generation sub-function

Our tool also provides a sub-function to generate better
mutant EPNs by the GA-based technique that was
discussed in section 2.2. After completing the calculation
of weights, a test engineer specifies the parameter values
for the GA-based technique on a dialog box of our tool,
and our tool starts mutant EPN generation. Fig. 4 shows
a screen shot of our tool (a sub-window) that gives the
results of mutant EPN generation to a test engineer. Its
GUI consists of (A) a pane to show the lists of all genes
of all chromosomes in all generation, and (B) a pane to
show a selected mutant EPN.

On (A), a test engineer selects an arbitrary generation
from the upper left list, and all chromosomes with fitness
in the selected generation are shown in the lower left list.
Additionally, a test engineer selects an arbitrary
chromosome from the list, and all genes of the selected
chromosome are shown in the right list. If a test engineer

Fig. 3. Screen shot of the tool that is executing
the weight calculation based on metrics.

Fig. 4. Screen shot of the tool that shows the results of
mutant EPN generation by the GA-based technique.

125

Journal of Robotics, Networking and Artificial Life, Vol. 5, No. 2 (September 2018) 122-127

selects an arbitrary gene in the list, a mutant EPN that
corresponds to the selected gene is shown in (B). A
mutated part in the mutant EPN is highlighted in order
that a test engineer can easily understand it.

After the sub-window that shows the results of
mutant EPN generation is closed by a test engineer, our
tool shows only a final solution (that is, a chromosome
with the highest fitness through all generations) on its
main window shown in Fig. 5. Our tool allows a test
engineer to modify the final solution, if needed. The
modification function was already discussed in our
previous study.5

4. Discussion

This section shows an application example, and gives the
discussion about the effectiveness of our tool shown in
the previous section.

In this study, we applied our tool to an original EPN
of an OFMS (Online File Management System) that was
discussed in Ref. 5. The environment to run our tool was
a personal computer with i5-6500T processor (2.50 GHz,
up to 3.10 GHz) and 4 GB RAM.

First, we developed a prototype of the OFMS based
on the original EPN. The size of the prototype is about
830 lines of JavaScript code. We then selected three
kinds of metrics (REET, MI, and RFTC) in order to
calculate weights for transitions of the original EPN. As
discussed in section 3.1, REET relates to usage
distribution, and an access log file of Apache was
gathered as its material. MI relates to complexity, and an
output file from an existing source code analysis tool was
gathered as its material. RFTC relates to test execution
history, and log files of an existing test tool were gathered
as its materials. We specified the materials on our tool,
and determined the setting to execute automatic weight
calculation. The effort of these manual operations on our
tool was about 10 minutes, which will depend on the skill
of test engineers. We then started the automatic weight
calculation by our tool, and successfully got the original
EPN with weights. The processing time for the
calculation was about 0.9 seconds. Note that the
development environment for the prototype of the OFMS
is on a server, and our tool interacts with it. Therefore,
the processing time will depend also on the performance
of the server and network. The effort and the time to get
the original EPN with weights seem to be acceptable for
most of test engineers.

Subsequently, we generated mutant EPNs based on
the original EPN with weights, by using our tool. The
parameter setting for the GA-based technique to generate
mutant EPNs was Nc=30, Ng=30, pm=0.5, pc=1.0, G=30,
imp1=0.3, imp2=0.5, and imp3=0.2 (imp1, imp2, and imp3
are the degree of importance of REET, MI, and RFTC,
respectively). Our tool executed the procedure of the GA-
based technique, and successfully outputted 30 mutant
EPNs as a final solution. The processing time for
completing the procedure was about 3.4 seconds, and it
seems to be acceptable for most of test engineers. The
average quality (that is, average fitness) of candidate
solutions in the first generation is about 0.59, and the
quality of the final solution is about 0.94. The
improvement of about 0.36 was achieved through the
alternation of generations by the GA-based technique,
and therefore our tool seems to be effective, at least in
this case. We reviewed the outputted mutant EPNs, and
found that:
 mutation operators were intensively applied to

highly weighted transitions and their related
elements (that is, parts that correspond to frequently
used functions, complex functions, and/or frequently
failed functions of the prototype),

 but some mutant EPNs included non-effective
intended failures that would not be important or
would not be made in actual development, and also,
there were equivalent mutant EPNs.

An additional technique to select appropriate
mutation operators based on the structure of an original
EPN, and an additional technique to remove equivalent
mutant EPNs need to be developed in order to make more
improvements of the effectiveness.

Fig. 5. Screen shot of the tool that shows a final solution.

126

Journal of Robotics, Networking and Artificial Life, Vol. 5, No. 2 (September 2018) 122-127

5. Conclusion and Future Work

In order to improve EPN-based mutation testing, we
introduced weights into an original EPN to evaluate the
quality of mutant EPNs, and then we proposed a GA-
based technique to generate high-quality mutant EPNs
within reasonable time and cost. Moreover, we have
developed a tool including the functions to calculate
weights based on metrics and to execute the procedure of
the GA-based technique. The results of applying the tool
to a non-trivial example indicated its effectiveness, and
the room for further improvements.

Our future work includes the development of
additional techniques to select appropriate mutation
operators based on the structure of an original EPN, and
also to remove equivalent mutant EPNs.

Acknowledgements

This work was supported by JSPS KAKENHI Grant
Number JP26730038.

References

1. J. Fitzgerald, P.G. Larsen, P. Mukherjee, N. Plat and M.
Verhoef, Validated Designs for Object-Oriented Systems,
(Springer-Verlag, London, 2005).

2. F. Belli, C.J. Budnik and W.E. Wong, Basic Operations
for Generating Behavioral Mutants, in Proc. of 2nd
Workshop on Mutation Analysis in conjunction with
ISSRE'06, Nov. 2006, pp.9-18.

3. T. Takagi, R. Takata, Z. Furukawa, F. Belli and M. Beyazıt,
Metrics for Model-Based Mutation Testing Based on
Place/Transition Nets, in Proc. of Joint Conf. of 21st Int.
Workshop on Software Measurement and 6th Int. Conf. on
Software Process and Product Measurement (IWSM-
MENSURA), Nov. 2011, pp.7-10.

4. T. Takagi and T. Teramoto, Extended Mutation Score
Based on Weighted Place/Transition Nets to Evaluate Test
Suites, in Proc. of 15th Int. Conf. on Computer and
Information Science (ICIS), June 2016, pp.959-961.

5. T. Takagi, S. Morimoto and T. Katayama, Development of a
Tool for Extended Place/Transition Net-Based Mutation
Testing and Its Application Example, Journal of Robotics,
Networking and Artificial Life (JRNAL), Vol.4, No.2, Sept.
2017, pp.168-174.

127

Journal of Robotics, Networking and Artificial Life, Vol. 5, No. 2 (September 2018) 122-127
