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Abstract 

This paper combines the niche particle concept and quantum-behaved particle swarm optimization (QPSO) 
method with chaotic mutation to train neural networks for image inspection. When exploring the 
methodology of reinforced quantum-behaved particle swarm (RQPSO) to train neural networks 
(RQPSONNs) for image inspection, first, image clustering is adopted to capture feasible information. In 
this research, the use of support vector regression (SVR) method determines the initial architecture of the 
neural networks. After initialization, the neural network architecture can be optimized by RQPSO. Then 
the optimal neural networks can perform image inspection. In this paper, the program of RQPSONNs for 
image inspection will be built. The values of root mean square error (RMSE) and peak signal to noise ratio 
(PSNR) are calculated to evaluate the efficiency of the RQPSONNs. Moreover, the experiment results will 
verify the usability of the proposed RQPSONNs for inspecting image. This research can be used in 
industrial automation to improve product quality and production efficiency. 

Keywords: Quantum-behaved particle swarm optimization, Niche particle, Support vector regression, 
Image inspection 

1. Introduction

The application of image inspection is quite extensive 
including medical science, machine vision, and predicting 
analysis of patterns in smart automation production 
fields.1–5 The input images are first filtered by a high-pass 
filter, which is used to remove direct current and enhance 
high-frequency components. And then the filtered input 
images, which are overlapped rather than displaced from 
each other in the plane, serve as the input images.6 Neural 
networks have the capacities of learning, adaption, and 
nonlinear mapping of images.7 
The PSO algorithm possesses the ability of high 
convergent speed, easily falling in some local optima is its 
fatal defect. Many researchers have presented revised PSO 
algorithms and obtained good results.8,9 Another 
improvement on traditional PSO algorithm is quantum- 
behaved particle swarm optimization (QPSO).10 However, 
in QPSO, particles fall into local optimal state in 
multimode optimization problems and cannot find any 

better state.11-13 To overcome the premature phenomenon 
in QPSO, a modified quantum-behaved particle swarm 
optimization (MQPSO) is proposed to identify nonlinear 
systems.14 Authors proposed niche particle swarm 
optimization (NPSO) for image segmentation.15 In NPSO 
algorithms, particles changing the place of the course to 
center the appropriate position (niche) of the particle will 
be absorbed. Then, particles amalgamate the small 
appropriate position (small niche) to become a large 
appropriate position (big niche).16 
This paper combines the niche particle concept, quantum-
behaved particle swarm optimization (QPSO) method 
with chaotic mutation to train neural networks for image 
inspection. Some experiment results verified the usability 
of the proposed RQPSONNs for inspecting image. 
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2. Modified Quantum Particle Swarm

Optimization

From the view of classical dynamics, to avoid explosion 
and guarantee convergence, particles must be bounded and 
fly in an attractive potential field. Clerc and Kennedy8 
have proved that if these coefficients are properly defined, 
the particle’s position ip will converge to the center of 
potential field, ],,,[ 21
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where l
ip  and gp  are the best position of the ith 

particle and the global best position; 1c  and 2c  are 
cognitive and social constriction coefficients, respectively; 

1r  and 2r  are random numbers between 0 and 1.  
Inspired by the behavior that particles move in a bounded 
state and preserve the global search ability, Sun et al.13 
proposed the QPSO algorithm. In the QPSO model, the 
solution of time-independent Schrödinger equation for this 
system in one dimensional space can be expressed as:11
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where λ  is a random number uniformly distributed on 
[0, 1] and L is the characteristic length of delta potential 
well (called "Creativity" of particles) which specifies the 
search scope of a particle. The mainstream thought point 
and can be expressed as the following forms:13 
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ipmbestL −⋅= β2 , (4) 

The creative coefficient β  with adaptive annealing 
learning mechanism according to the change rate of 
optimal estimation has the form: 

( )γβββ fit∆⋅∆−= max  , (5) 
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where β∆  is step length of β , fit∆  is the change rate 
of optimal estimation so far. The mechanism of adaptive 
annealing learning can overcome the stagnation problem 
to accelerate the convergent speed.  

3. Reinforced Quantum-Behaved Particle Swarm

Optimization Neural Networks

3.1. Radial basis function neural networks 

One can use a neural network to estimate the input–output 
relation of a dynamic system. In this paper, radial basis 
function neural networks (RBFNNs) are adopted because 
they have a simple structure, as shown in Figure 1. When 
the Gaussian function is chosen as the radial basis function, 
RBFNNs can be expressed in the form 
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where [ ]Tm txtxtxt )(ˆ,),(ˆ),(ˆ)(ˆ 21 =x is the input vector; 
[ ]Tm tytytyt )(ˆ,),(ˆ),(ˆ)(ˆ 21 =y is the output vector; ijw  is

the synaptic weight; iG  is the Gaussian function;  im
and iσ  are the center and width of iG  respectively; and 
L is the number of the Gaussian functions, which is also 
equal to the number of hidden layer nodes. 
Given a set of training input–output pairs ( ),, )()( kk yx

,,,2,1 Nk =  the optimization problem of RBFNNs is to 
determine the values of ,ijw  ,im  and iσ  to minimize 
the index 
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where )(ˆ ky  is the corresponding output of RBFNNs 
when the input x̂  to the network is equal to )(kx   
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Fig. 1. The structure of RBFNNs. 

3.2. Niche evolution 

The appropriate position evolves (niche evolution) can 
solve the multimodal function optimization problems 
effectively.17 Adopt the structure of appropriate position 
and search some local extreme values synchronously and 
avoid early convergence. It is difficult to determine the 
appropriate radius (niche radius) .shareσ Define the niche 
radius as follows:18 
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where λ  is an adjusting parameter, R is norm of [ ]ν,u  , 
0σ is the relative parameter of .shareσ avgd is the average 

distance of particles. 

3.3. Chaotic mutation 
The Chaos phenomenon in nonlinear science means a kind 
of definite but unpredictable motion state. It has already 
been applied to optimizing stochastic optimization 
problems efficiently. This study adopts  chaotic mutation 
operation to avoid falling into some local extreme value. 
The logistic equation of Chaos iterating is expressed as 
follows:17 
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4. Simulation Results

In this paper, a work piece for image inspection is 
performed by the proposed RQPSONNs shown as Figure 
2. 

Fig. 2. work piece on the conveyer belt for inspection. 

The frame of image recognition is illustrated as Figure 3. 
Then, the experiment results of cracked work piece and 
perfect work piece are shown as Figures 4 and 5. 
Meanwhile, the values of PSNR and RMSE are shown in 
Table 1. The experiment results verified the usability of 
the proposed RQPSONNs for inspecting image. 

Fig. 3. Frame of image inspection. 
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Fig. 4. Cracked work piece. 
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Fig. 5. Perfect work piece. 

Table 1. The values of PSNR and RMSE for cracked work piece 
and perfect work piece. 

work piece PSNR RMSE 

cracked work piece 18.216 13.127 

perfect work piece 20.136 15.037 

5. Conclusions

In the study, RQPSONNs combining the niche particle 
concept, quantum-behaved particle swarm optimization 
(QPSO) method with chaotic mutation to train neural 
networks is proposed to solve image inspection. Moreover, 
the experiment results have verified the usability of the 
proposed RQPSONNs for inspecting image. 
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