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1.  INTRODUCTION

If a system with a fault continues to be operated, it can cause a 
serious accident or a considerable damage. Thus, it is important 
to detect faults and compensate them, and many fault detection 
methods have been proposed [1,2]. The advantage of fault detec-
tion is that the safety is improved, you can cope with the fault 
more promptly, and sometimes the system can be controlled 
compensating the fault. There are two kinds in fault detection, 
signal-based detection and model-based one. The signal-based 
detection is for example a method using spectral analysis, sta-
tistical signal analysis or pattern recognition, while the model-
based detection uses an observer or a parameter estimation [3]. 
In model-based detection, a general method detecting additive 
faults is proposed by Isermann [4].

In detecting a fault where control input or feedback signal is fixed, 
a general detection method is not established. In this paper, we 
propose a model-based detection method for the sticking fault 
of control input and feedback signal on a system expressed as a 
controlled auto-regressive integrated moving average (CARIMA) 
model. Then, we discuss its effectiveness performing a numerical 
simulation.

2.  STICKING FAULT DETECTING METHOD

In this section, we discuss how to detect sticking fault of control 
input and feedback signal on the general linear systems.

2.1.  Problem Statement

First, we assume the control object is single input and single output 
system and expressed in Eq. (1) as following CARIMA model:
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where ym(k) represents a system output, um(k) is a control input, x (k) 
is a white Gaussian noise with 0 mean and km is a time delay. z−1 is a 
backshift operator where z−1ym(k) = ym(k − 1) and Δ is a difference 
operator defined as Δ = 1 − z−1. System parameters, a, b and c in  
Eq. (1) changes gradually or do not change at all. We suppose the 
reference value of the control system changes depending on time.

Let us define the sticking fault. When the sticking fault of control 
input occurs, the input to the system um(k) becomes a white noise 
and expressed in Eq. (2):
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where u(k) is a control input calculated by the controller, uf is a con-
stant value and xu(k) is a white Gaussian noise with 0 mean. When 
the sticking fault of feedback signal occurs, the feedback signal to 
the controller y(k) becomes a white noise and expressed in Eq. (3):

	 y k
y k
y k

m

f y
( )

( ) ( )
( ) ( )= +





normal
faultx

	 (3)

A RT I C L E  I N F O
Article History

Received 10 August 2018
Accepted 19 October 2018

Keywords

Fault detection 
sticking fault 
CARIMA model

A B S T R AC T
This paper proposes a sticking fault detecting method for controlled auto-regressive integrated moving average model (CARIMA) 
which detect the sticking fault of control input and feedback signal. It consists of model estimation using recursive least square 
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a fault signal from the input and output data. Numerical simulations are performed, and it is shown that this method can detect 
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where yf  is a constant value and xy(k) is a white Gaussian noise with 
0 mean.

Figure 1 shows a block diagram of the fault detection for the 
above-mentioned faults. This method consists of two parts, model 
estimation and fault analysis.

2.2.  Model Estimation

Least square method with the forgetting factor [5] is used for the 
model estimation. In this method, the cost function is given in 
Eq. (4):
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where p  is a system parameter vector, l is a forgetting factor where 
0 1< ≤l , y k� |p( ) is an estimated output and N is the number of the 
input–output data. The estimated parameter p�  which minimizes 
the cost function on CARIMA model is obtained by the following 
recursive algorithm [Eq. (5)]
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¨( )k  is a priori error and h(k) is a posterior error. The parameter 
vector q�( )k  and the data vector y (k) are defined in Eq. (6) as follows:

	
q
y
� � � � � � � � � �( ) [ , , , , , , , , ]

(
( ) ( ) ( ) ( ) ( ) ( )k a k a b b c ck k k k kn m l

T= 1 0 1

kk y k y u k k
u k k m k

k n m

m

) [ ( ), , , ( ), ,
( ), ( ), , (

( )= − − − −
− − −

−∆ ∆ ∆
∆

1
1

� �
�h h tt l T− )]

	� (6)

where â, b�  and ĉ represent the estimated parameter of a, b and c in 
Eq. (1) respectively. The initial value of the covariance matrix P(k) 
is given in Eq. (7):

	 P(0) = g I	� (7)

where I is an identity matrix. g is usually set as a large value like 
103 or 104.

The weight of a past input–output data in cost function IN(q ) 
becomes smaller as the time goes by due to the forgetting factor. 
Thus, the estimated parameter p�( )k  is calculated using resent data 
mainly. Thus, this parameter estimation method is also effective for 
systems where its parameters change.

2.3.  Fault Detection

Figure 2 shows the outline of the fault detection. To detect sticking 
fault, it uses the estimated system parameters and the input–output 
data of past nd steps called detecting period. The fault state is eval-
uated by the following Eq. (8):
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where b is an infinitesimal value to avoid dividing by 0. A z�[ ]-1  
and B z�[ ]−1  are the estimated system parameter polynomials at 
step k n nd m− −  which are gained from q�( )k n nd m- -  calcu-
lated in Eq. (5), where nm is the order of the system defined by 
n m nm = +max{ , } 1 . It is assumed that q�( )k n nd m- -  is a good 
estimation of the actual system at step k because we are focusing on 
systems whose parameters do not change abruptly.

We assume a situation that a fault has occurred. The estimated 
parameters become useless values after the fault. However, at a 
moment like Figure 2, estimated parameter q�( )k n nd m- -  is still 
valid and only the input–output data after the fault are used for the 
evaluation value V(k). Then V(k) becomes bigger than 1 as being 
mentioned in Section 3, and a fault signal is generated after satisfy-
ing the following inequality [Eq. (9)]:

	 V(k) > Vth	�  (9)

where Vth is a threshold value set as Vth > 1. After detecting the fault, 
it stops updating the estimated parameters in Eq. (5).

3.  STICKING FAULT EVALUATION VALUE

We discuss the size of the evaluation value V(k) on the normal state 
and the fault one. First, let us define the error polynomials of the 
system parameters, EA[z−1] and EB[z−1] as Eq. (10):
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Figure 1 | Block diagram of sticking fault detection Figure 2 | Outline of fault detection
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where km = 1. We set the disturbance characteristics polynomials 
C[z−1] as C[z−1] = 1. The system parameter polynomials do not 
change throughout the simulation. x(k), xu(k) and xy(k) are set as a 
zero mean white Gaussian noise with the variance of 0.012, 0.12 and 
0.0052 respectively.

In the model estimation, we assume that the order of the system 
parameter polynomials l, m and n and the time delay km are known. 
Then, the estimated parameter vector p�( )k  is given in Eq. (16):

	 p� � � � �( ) [ , ( ), ( ), ( )]( )k a a k b k b kk T= 1 2 0 1 	�  (16)

We set g  to 103 and l to 0.98. In the fault detection, nd = 20, Vth = 
1.5 and b = 10−10 are used.

Generalized predictive control [6] which uses CARIMA model 
to predict the output is used as a controller. When designing it,  
Eq. (14) is used for the internal model, and N1 = 1, N2 = 5, NU = 5, 
l(j) = 0.01, and time constant of the reference trajectory t = 0.3 s are 
taken. For the input limitation, A = 1, w = 0.1p, uh = 4 and ul = −4  
are used.

Figure 3 shows a simulation result where the sticking fault of con-
trol input occurs at a step 400. r(k) represents reference value and 
the dashed line on the graph V(k) is the threshold value Vth. The 
evaluate value V(k) is normally smaller than 1, and it becomes 
greater after the fault occurs. It surpasses Vth at a step 406, and then 
the fault signal is generated. V(k) takes relatively great value on the 
beginning due to the error of the parameter estimation.

Figure 4 shows a result of the sticking fault of feedback signal. Like 
Figure 3, V(k) becomes greater after the fault, and the fault signal is 
generated at a step 404.

5.  CONCLUSION

We proposed the sticking fault detecting method in which the eval-
uation function is introduced. It evaluates the input–output data on 

Using Eqs. (1–3) and (10) and ignoring the infinitesimal value b, 
evaluation function in Eq. (8) on the normal state can be deformed 
as Eq. (11):
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where the polynomial expression is abbreviated like B instead of 
B[z−1], and ∑i  means ∑ = − +i k n

k
d 1. Assuming that the terms of error 

polynomials and that of white noise x(i) are relatively small com-
pared to the term of u(i) in Eq. (11), V k( )1  is gained.

On the other hand, after the sticking fault of the input has occurred, 
the evaluation value at a moment described in Figure 2 is deformed 
using Eq. (2) of the fault state and Eqs. (1), (3) and (10), and 
expressed as Eq. (12):
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while the evaluation value on a sticking fault of the feedback signal 
is deformed using Eq. (3) of the fault state, and expressed as Eq. (13):
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Because the terms of error polynomials and white noises are smaller 
than that of u(i) as assumed before, V k( )1  is obtained in both 
Eqs. (12) and (13). Therefore, the evaluation value becomes greater 
after the sticking fault occurs, and the fault can be detected by Eq. (9). 
However, the threshold Vth has to be set based on an input–output 
data on an actual system or a simulation results because the evaluation 
value V(k) is dependent on the estimation error and disturbances.

Systems usually have limitations of the control input. When design-
ing a controller considering the limitation, higher and lower con-
stant limits are generally used. However, Eqs. (11–13) state that 
Δu(i) has to have a value, and Δu(i) can be 0 when the input is lim-
ited by the constant value. Thus, the limitation has to be dependent 
on time, and is given by Eq. (14):
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where uc(k) is the control input calculated by the controller, and  
A, w, uh and ul are setting parameters.

4.  SIMULATION EXAMPLE

To verify the effectiveness of this fault detecting method, we apply 
it to a system expressed as Eq. (15):
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Figure 3 | Detection result on control input sticking fault
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a detecting period, using the past estimated parameter calculated 
by the recursive least square method. Performing a numerical sim-
ulation, it is confirmed that the sticking fault of control input and 
feedback signal can be detected.
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Figure 4 | Detection result on feedback sticking fault
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