
Journal of Robotics, Networking and Artificial Life
Vol. 5(3); December (2018), pp. 165–168

DOI: 10.2991/jrnal.2018.5.3.5; ISSN 2405-9021 print; 2352-6386 online
https://www.atlantis-press.com/journals/jrnal

* Corresponding author. Email: duangjai.jit@dpu.ac.th

Research Article

Integrated Optimization of Differential Evolution with
Grasshopper Optimization Algorithm

Duangjai Jitkongchuen*, Udomlux Ampant

College of Innovative Technology and Engineering, Dhurakij Pundit University, Thailand

1.  INTRODUCTION

Meta-heuristic algorithm techniques constitute range from simple
local search procedures to complex learning processes. The basic
concepts of meta-heuristics permit an abstract level description.
Nature-inspired meta-heuristic can be grouped in three main
classes: Evolution-based, physics-based and swarm-based.

Evolution-based algorithms are inspired by the concepts of nature
evolution. The population in search process are randomly gener-
ated which are developed over subsequent generation. The next
generation is created by combination of the individuals in the pre-
vious generation. These provide the population to be optimized
over the course of generations. The most popular evolution-based
algorithm is genetic algorithms (GA) [1]. GA has a process of
fitness-based selection and recombination to produce a successor
population for the next generation. During recombination, child
chromosomes are produced by recombined genetic material from
parent chromosomes are selected. As this process is repeated,
a sequence of consecutive generations evolves and the average
fitness of the chromosomes inclines to increase until some stopping
criterion is reached. Other popular algorithms such as differential
evolution (DE) algorithms [2], the principal difference between
genetic algorithms and differential evolution is that DE use muta-
tion as the primary search mechanism, while GA use crossover as
the probabilistic mechanism to exchange of information among
solutions to locate better solutions. Biogeography-based optimizer
(BBO) [3] algorithm is applied from nature phenomenon regarding
the distribution of living creatures in various islands. In this field
of study different ecosystems are explored for finding the relations

between different species in terms of immigration, emigration, and
mutation. The main inspiration of the BBO algorithm is to reach a
stable situation based on migration and mutation in the evolution
of ecosystems.

The second class of meta-heuristic is physics-based algorithms
that imitate the physical rules. For example, gravitational search
algorithm (GSA) [4], GSA is a nature-inspired conceptual frame-
work based on gravitational kinematics, a branch of physics that
models the motion of masses moving under the influence of grav-
ity. Galaxy-based search algorithm [5] is inspired on the spiral arm
of spiral galaxies to search its surrounding. This spiral movement
is improved by chaos to escape from local optimums. Curved space
optimization [6] inspired by general relativity theory is used to
enhance the efficiency of a simple random search, and convert it to
a very robust optimization tool.

The third class of meta-heuristic is swarm-based algorithms that
imitate the social behavior of swarms, herds, flocks, or schools of
animals. The most popular algorithms are particle swarm optimiza-
tion (PSO) [7]. PSO inspired by bird flocking or fish schooling. Each
particle will be iteratively updated to improve its solution during
movement around the search space. The result leads to the best value
of global solution. Other popular swarm-based algorithms are bat
algorithms (BA) [8]. BA is inspired by echolocation behavior of micro
bats to avoid obstacles, find their home, and detect their prey in the
darkness. Firefly algorithm (FA) [9] applied from the flashing light
of fireflies when they want to mate or to warn others about predators.

The new meta-heuristic has been focused on this paper is differ-
ential evolution algorithm which is a global search optimization
algorithm and improved performance of it by added grasshopper
optimization algorithm (GOA) to increase convergence rate.

A RT I C L E I N F O
Article History

Received 24 March 2018
Accepted 6 June 2018

Keywords

Meta-heuristic
differential evolution algorithm
grasshopper optimization algorithm
optimization

A B S T R AC T
This paper proposes a scheme to improve the differential evolution (DE) algorithm performance with integrated the
grasshopper optimization algorithm (GOA). The grasshopper optimization algorithm mimics the behavior of grasshopper.
The characteristic of grasshoppers is slow movement in the larval stage but sudden movement in the adulthood which seem
as exploration and exploitation. The grasshopper optimization algorithm concept is added to DE to guide the search process
for potential solutions. The efficiency of the DE/GOA is validated by testing on unimodal and multimodal benchmarks
optimization problems. The results prove that the DE/GOA algorithm is competitive compared to the other meta-heuristic
algorithms.

© 2018 The Authors. Published by Atlantis Press SARL.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

166	 D. Jitkongchuen and U. Ampant / Journal of Robotics, Networking and Artificial Life 5(3) 165–168

where l is used to balance the difference vectors between the best
vectors and the target vectors. The value of l that is generated by
Eq. (5) is decreased in each generation.

		  l l lG G G c+ = ´1
1- () � (5)

Meanwhile the mutation parameter F is used to perform the
amplification of the difference between two random population
members. When the procedure is trapped in the local optimum,
the value of F is increased by Eq. (6).

		  F F F cG G G+ = + ´1
2() � (6)

The parameters c1 in Eq. (5) and c2 in Eq. (6) are uniform random
numbers. c1 ∈ [0, 0.1] is a random value and c2 ∈ [0, 1] is a random
value. The crossover parameter (CR) is regenerated at the end of
each generation to find an optimized parameter. The new crossover
parameter is generated by Eq. (7).

	    CR CR (mean CR
G G

A S c+ = + ´1
3()) � (7)

where meanA is the usual arithmetic mean. SCR is the set of cross-
over parameter values. C3 ∈ [0, 1] is a uniform random number.

After that, the crossover operation is rearranged. The vectors that
created from the target vectors and the mutant vector is called the
prime vectors ()¢Ui . The prime vectors is used to generate the trial
vectors by comparing the fitness value between the prime vectors
and the mutant vectors, otherwise the trial vectors is generated by
grasshopper optimization algorithm.

The grasshopper optimization algorithm was proposed in
Saremi et al. [10] mimics the behavior of grasshopper. The char-
acteristic of the swarm in the larval stage is slow movement and
small steps but is long range and suddenly movement in adult-
hood. These two characters seem as exploration and exploita-
tion. The search agents are encouraged to move suddenly in
exploration and conduce to move locally during exploitation.
These two functions as well as target seeking are performed by
grasshopper naturally.

The proposed algorithm takes the feature of movement of the
grasshopper to generate a new value for the trial vectors is showed
in Eq. (8).

	  U c c
ub lb

s x x
x x

d
Ti

d d d
j
d

i
d

j
j i

j i

i, j

d=
- ()













 +

=
≠

∑ 2

NP

-
-

1

� � (8)

where ubd and lbd are the upper bound and the lower bound in
the dth dimension. s r fe er l r() = - -- , di j, is the distance between
ith and jth grasshopper. T d

� is the value of the dth dimension in the
target. The parameter c is decreased equivalent to the number of
iteration to balancing exploration and exploitation is calculated
as Eq. (9).

		  c c l
c c

L
= max -

-max min � (9)

where cmax and cmin are the maximum and the minimum value,
respectively. l is the current iteration and L is the maximum
number of iterations.

The rest of the paper is structured as follows. Section 2 describes
some backgrounds of the differential evolution algorithm. In
Section 3, the proposed algorithm is presented. Section 4 shows
the experimental results and the conclusions will be discussed in
Section 5.

2. � THE DIFFERENTIAL EVOLUTION
ALGORITHM

The differential evolution algorithm optimizes a problem by sus-
taining a population of candidate solutions and creating new can-
didate solutions by combining existing ones according to its simple
procedure, and then keeping whichever candidate solution has the
best score or fitness on the optimization problem at hand.

The procedure of differential evolution algorithm starts to initialize
target vectors X x x x xi

G
i i j i N i= (, , ..., , ...,), , , ,1 2 where i = 1, 2, ..., NP.

NP is the population size. N is the dimension of the population.
The superscript G identifies the Gth generation.

The target vectors are used to generate the mutant vectors
V v v v vi

G
i i j i N i= (, , ..., , ...,), , , ,1 2 in next steps. The DE/current-to-

best/1 mutation scheme is shown in Eq. (1).

	   V X F X X F X Xi
G

i
G G

i
G

r
G

r
G= + +() ()best 2

- -
1

� (1)

where r1 and r2 are integer number chosen from the set {1, 2, ...,
NP} and must be different from index i. XG

best is the best solution
in the generation G. F is used to control amplification of the dif-
ferential evolution. The value of F is set in the range [0, 2]. The
target vectors and mutant vectors are used to generate the trial
vectors U u u u ui

G
i i j i N i= (, , ..., , ...,), , , ,1 2 in crossover operation to

increase the diversity of population. The trial vectors are generated
by Eq. (2).

	   u
v j j
xj i

j i

j i
,

,

,

, () ()
,=

£ =ì
í
î

if rand CR or
otherwise

rand � (2)

where j = 1, 2, ..., N. rand is a uniform random number chosen in
the range [0, 1]. CR ∈ [0, 1] is the crossover parameter. jrand is an
index randomly chosen in the range [0, N].

The last step is the selection operation to choose a better vector for
next generation. The new generations are selected by comparing
the fitness value between the target vector and the trial vector. The
selection is shown in Eq. (3).

	    X
U f U f X
Xi

G i
G

i
G

i
G

i
G

+ =
<ì

í
î

1 , (() ())
,

if
otherwise

� (3)

The whole process is repeated until the termination criteria are
satisfied or a predefined number of iterations are reached.

3.  THE PROPOSED ALGORITHM

The schema of DE/current-to-best/1 in mutation operation is
updated by splitting F mutation parameter to l and F. The new
mutation schema is shown in Eq. (4).

	   V X X X F X Xi
G

i
G G

i
G

r
G

r
G= + +l () ()best 2

- -
1

� (4)

	 D. Jitkongchuen and U. Ampant / Journal of Robotics, Networking and Artificial Life 5(3) 165–168	 167

Table 1 | The benchmark functions

Functions Range

f x xii

N

1
2

1
() =

=∑ [−100, 100]

f x x xii

N

ii

N
2 1 1
() = +

= =∑ ∏ [−100, 100]

f x x jj

i

i

N

3 1

2

1
() = ()== ∑∑ [−10, 10]

f x x i Ni i4 1() max ,= ≤ ≤{ } [−100, 100]

f x x x xi i ii

N

5 1
2 2 2

1

1
100 1() [() ()]= - + -+=

-∑ [−100, 100]

f x xii

N

6

2

1
0 5() .= + ()=∑ [−30, 30]

f x ixii

N

7
4

1
0 1() [,)= +

=∑ random [−100, 100]

f x x xi ii

N

8 1
() sin | |= - ()=∑ [−1.28, 1.28]

f x x xi ii

N

9
2

1
10 2 10() cos()= - + =∑ p [−500, 500]

2
10 1 1

1 1() 20exp 0.2 exp cos2 20N N
i ii i

f x x x e
N N= =

   = − − − + +     
∑ ∑ p [−5.12, 5.12]

f x x
x

iii

N i
i

N
11

2
1 1

1
4000

1() cos= -
æ
èç

ö
ø÷
+

= =å Õ [−32, 32]

f x
n

y y y yi ii

n

n12 1
2 2

11
10 1 10() { sin() () [sin ()] (= + + ++=

-åp
p p- -1 1

1
)) } (, , ,)2

1
10 100 4+

=å u xii

n [−600, 600]

u x a k m

k x a x a

a x a y
x

k x a x
i

i
m

i

i i
i

i
m

i

(, , ,)

() ,

,

() ,

=

>

< < = +
+

<

-

-

- - -

0 1
1

4
aa

ì

í
ïï

î
ï
ï

[−50, 50]

f x x x x xi n13
2

1 1
2 2 20 1 3 1 3 1 1() . {sin () () [sin ()] () [si= + + + + +p p- -1 1 nn ()]} (, , ,)2

1 11
2 5 100 4p x u xni

n

i

n

= =å å+ [−50, 50]

Table 2 | The experimental results

Functions DE/GOA DE FEP PSO

f1 2.35E−220 8.20E−14 5.70E−04 1.36E−04
f2 4.28E−11 1.50E−09 8.10E−03 4.21E−02
f3 3.50E−226 6.80E−11 1.60E−02 70.12562
f4 0 0 3.00E−01 1.086481
f5 28.98017 0 5.06 96.71832
f6 0 0 0 1.02E−04
f7 2.11E−05 4.63E−03 1.42E−01 1.23E−01
f8 −8831.53 −11080.1 −12554.5 −4841.29
f9 6.76E−10 69.20 4.60E−02 46.70423
f10 4.44E−16 9.70E−08 1.80E−02 2.76E−02
f11 0 0 1.60E−02 9.22E−03
f12 2.87E−09 7.90E−15 9.20E−06 6.92E−03
f13 3.01E−08 5.10E−14 1.60E−04 6.68E−03

4.  THE EXPERIMENTAL RESULTS

The proposed algorithm has been evaluated performance with thir-
teen benchmark functions [11]. The test functions are unimodal
(f1 - f7) and multimodal (f8 - f13). The details of benchmark functions
are shown in Table 1. The mutation parameters set l, F = 0.5, the
crossover parameter set CR = 0.9 and population size set NP = 100.

The proposed algorithm was run 30 times on each benchmark
functions. The average results are summarized in Table 2. The per-
formance of the proposed algorithm is compared with two EAs:
DE and fast evolutionary programming (FEP) and compared with
swarm-based algorithm: PSO. The results of DE, FEP and PSO
were taken from the results reported in Saremi et al. [12].

According to the results of Table 2, DE/GOA is able to provide very
competitive results. This algorithm outperforms all others in f1, f2,
f3, and f7. Both DE/GOA and DE were successful to find the optimal
solution in f4 and f6. In the function f5, only DE could solve the opti-
mum. Therefore, these results show the performance of DE/GOA
in terms of exploiting the optimum.

The multimodal functions have many local optima with the
number increasing exponentially with dimension. This makes them
suitable for benchmarking the exploration ability of an algorithm.

The experimental showed that DE/GOA is able to provide very
competitive results on the multimodal benchmark functions
as well.

The experimental results show that the global search algo-
rithms which added grasshopper optimization algorithm could

168	 D. Jitkongchuen and U. Ampant / Journal of Robotics, Networking and Artificial Life 5(3) 165–168

Ms. Udomlux Ampant

She graduated Master of Business
Administration (Marketing) Dhurakij
Pundit University. She is an lecturer in
the College of Innovative Technology
and Engineering in Dhurakij Pundit
University.

Dr. Duangjai Jitkongchuen

She graduated Ph.D. in Information
Technology from King Mongkut’s
Institute of Technology Ladkrabang
(KMITL) in 2014 and now she
is working as Assistant Professor
at Dhurakij Pundit University,
College of Innovative Technology
and Engineering as a deputy dean
administration. Her research area is
about machine learning, data mining
and bio-inspired algorithms.

increase convergence rate because the characteristic of GOA
is both exploration and exploitation. Meanwhile the results of
multimodal functions are not perfect that may be due to the
multimodal functions have many increasing number of local
optimum.

5.  CONCLUSION

This work proposed to improve the DE algorithm performance
with integrated the GOA. Thirteen benchmark functions were
employed the performance in terms of exploitation and explora-
tion. The results showed that DE/GOA was able to provide com-
petitive results compared to well known heuristics such as DE, FEP
and PSO.

REFERENCES

  [1]	 J.H. Holland, Genetic algorithms, Sci. Am. 267 (1992), 66–72.
  [2]	 R. Storn, K. Price, Differential evolution – a simple and effi-

cient heuristic for global optimization over continuous spaces,
J. Global Optim. 11 (1997), 341–359.

  [3]	 D. Simon, Biogeography-based optimization, IEEE Transactions
on Evolutionary Computation, IEEE, 2008, pp. 702–713.

  [4]	 E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, GSA: a gravita-
tional search algorithm, Inform. Sci. 179 (2009), 2232–2248.

  [5]	 H. Shah-Hosseini, Principal components analysis by the galaxy-
based search algorithm: a novel metaheuristic for continuous
optimization, Int. J. Comput. Sci. Eng. 6 (2011), 132–140.

  [6]	 F.F. Moghaddam, R.F. Moghaddam, M. Cheriet, Curved space
optimization: a random search based on general relativity theory,
2012, arXiv:1208.2214 (https://arxiv.org/abs/1208.2214).

  [7]	 J. Kennedy, R. Eberhart, Particle swarm optimization, Proceedings
of ICNN’95 - International Conference on Neural Networks,
IEEE, Perth, WA, Australia, 1995, pp. 1942–1948.

  [8]	 X.S. Yang, A New Metaheuristic Bat-inspired Algorithm,
Springer, Berlin, 2010, pp. 65–74.

  [9]	 I. Fister, I. Fister Jr, X-S. Yang, J. Brest, A comprehensive review of
firefly algorithms, Swarm Evolution. Comput. 13 (2013), 34–46.

[10]	 S. Saremi, S. Mirjalili, A. Lewis, Grasshopper optimization algo-
rithm: theory and application, Adv. Eng. Software 105 (2017), 30–47.

[11]	 X. Yao, Y. Liu, G. Lin, Evolutionary Programming Made Faster, IEEE
Transactions on Evolutionary Computation, IEEE, 1999, pp. 82–102.

[12]	 S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv.
Eng. Software 69 (2014), 46–61.

Authors Introduction

http://dx.doi.org/10.1023/a:1008202821328
http://dx.doi.org/10.1023/a:1008202821328
http://dx.doi.org/10.1023/a:1008202821328
http://dx.doi.org/10.1109/tevc.2008.919004
http://dx.doi.org/10.1109/tevc.2008.919004
http://dx.doi.org/10.1016/j.ins.2009.03.004
http://dx.doi.org/10.1016/j.ins.2009.03.004
http://dx.doi.org/10.1504/ijcse.2011.041221
http://dx.doi.org/10.1504/ijcse.2011.041221
http://dx.doi.org/10.1504/ijcse.2011.041221
https://arxiv.org/abs/1208.2214
https://arxiv.org/abs/1208.2214
https://arxiv.org/abs/1208.2214
http://dx.doi.org/10.1109/icnn.1995.488968
http://dx.doi.org/10.1109/icnn.1995.488968
http://dx.doi.org/10.1109/icnn.1995.488968
http://dx.doi.org/10.1007/978-3-642-12538-6_6
http://dx.doi.org/10.1007/978-3-642-12538-6_6
http://dx.doi.org/10.1016/j.swevo.2013.06.001
http://dx.doi.org/10.1016/j.swevo.2013.06.001
http://dx.doi.org/10.1016/j.advengsoft.2017.01.004
http://dx.doi.org/10.1016/j.advengsoft.2017.01.004
http://dx.doi.org/10.1109/4235.771163%0D
http://dx.doi.org/10.1109/4235.771163%0D
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007

