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1. INTRODUCTION

Meta-heuristic algorithm techniques constitute range from simple 
local search procedures to complex learning processes. The basic 
concepts of meta-heuristics permit an abstract level description. 
Nature-inspired meta-heuristic can be grouped in three main 
classes: Evolution-based, physics-based and swarm-based.

Evolution-based algorithms are inspired by the concepts of nature 
evolution. The population in search process are randomly gener-
ated which are developed over subsequent generation. The next 
generation is created by combination of the individuals in the pre-
vious generation. These provide the population to be optimized 
over the course of generations. The most popular evolution-based 
algorithm is genetic algorithms (GA) [1]. GA has a process of  
fitness-based selection and recombination to produce a successor 
population for the next generation. During recombination, child 
chromosomes are produced by recombined genetic material from 
parent chromosomes are selected. As this process is repeated, 
a sequence of consecutive generations evolves and the average  
fitness of the chromosomes inclines to increase until some stopping 
criterion is reached. Other popular algorithms such as differential 
evolution (DE) algorithms [2], the principal difference between 
genetic algorithms and differential evolution is that DE use muta-
tion as the primary search mechanism, while GA use crossover as 
the probabilistic mechanism to exchange of information among 
solutions to locate better solutions. Biogeography-based optimizer 
(BBO) [3] algorithm is applied from nature phenomenon regarding 
the distribution of living creatures in various islands. In this field 
of study different ecosystems are explored for finding the relations 

between different species in terms of immigration, emigration, and 
mutation. The main inspiration of the BBO algorithm is to reach a 
stable situation based on migration and mutation in the evolution 
of ecosystems.

The second class of meta-heuristic is physics-based algorithms 
that imitate the physical rules. For example, gravitational search 
algorithm (GSA) [4], GSA is a nature-inspired conceptual frame-
work based on gravitational kinematics, a branch of physics that 
models the motion of masses moving under the influence of grav-
ity. Galaxy-based search algorithm [5] is inspired on the spiral arm 
of spiral galaxies to search its surrounding. This spiral movement 
is improved by chaos to escape from local optimums. Curved space 
optimization [6] inspired by general relativity theory is used to 
enhance the efficiency of a simple random search, and convert it to 
a very robust optimization tool.

The third class of meta-heuristic is swarm-based algorithms that 
imitate the social behavior of swarms, herds, flocks, or schools of  
animals. The most popular algorithms are particle swarm optimiza-
tion (PSO) [7]. PSO inspired by bird flocking or fish schooling. Each 
particle will be iteratively updated to improve its solution during 
movement around the search space. The result leads to the best value  
of global solution. Other popular swarm-based algorithms are bat 
algorithms (BA) [8]. BA is inspired by echolocation behavior of micro-
bats to avoid obstacles, find their home, and detect their prey in the 
darkness. Firefly algorithm (FA) [9] applied from the flashing light 
of fireflies when they want to mate or to warn others about predators.

The new meta-heuristic has been focused on this paper is differ-
ential evolution algorithm which is a global search optimization 
algorithm and improved performance of it by added grasshopper 
optimization algorithm (GOA) to increase convergence rate.
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A B S T R AC T
This paper proposes a scheme to improve the differential evolution (DE) algorithm performance with integrated the 
grasshopper optimization algorithm (GOA). The grasshopper optimization algorithm mimics the behavior of grasshopper. 
The characteristic of grasshoppers is slow movement in the larval stage but sudden movement in the adulthood which seem 
as exploration and exploitation. The grasshopper optimization algorithm concept is added to DE to guide the search process 
for potential solutions. The efficiency of the DE/GOA is validated by testing on unimodal and multimodal benchmarks 
optimization problems. The results prove that the DE/GOA algorithm is competitive compared to the other meta-heuristic 
algorithms.
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where l is used to balance the difference vectors between the best 
vectors and the target vectors. The value of l that is generated by 
Eq. (5) is decreased in each generation.

   l l lG G G c+ = ´1
1- ( )  (5)

Meanwhile the mutation parameter F is used to perform the 
amplification of the difference between two random population 
 members. When the procedure is trapped in the local optimum, 
the value of F is increased by Eq. (6).

   F F F cG G G+ = + ´1
2( )  (6)

The parameters c1 in Eq. (5) and c2 in Eq. (6) are uniform random 
numbers. c1 ∈ [0, 0.1] is a random value and c2 ∈ [0, 1] is a random 
value. The crossover parameter (CR) is regenerated at the end of 
each generation to find an optimized parameter. The new crossover 
parameter is generated by Eq. (7).

    CR CR (mean CR
G G

A S c+ = + ´1
3( ) )  (7)

where meanA is the usual arithmetic mean. SCR is the set of cross-
over parameter values. C3 ∈ [0, 1] is a uniform random number.

After that, the crossover operation is rearranged. The vectors that 
created from the target vectors and the mutant vector is called the 
prime vectors ( )¢Ui . The prime vectors is used to generate the trial 
vectors by comparing the fitness value between the prime vectors 
and the mutant vectors, otherwise the trial vectors is generated by 
grasshopper optimization algorithm.

The grasshopper optimization algorithm was proposed in 
Saremi et al. [10] mimics the behavior of grasshopper. The char-
acteristic of the swarm in the larval stage is slow movement and 
small steps but is long range and suddenly movement in adult-
hood. These two characters seem as exploration and exploita-
tion. The search agents are encouraged to move suddenly in 
exploration and conduce to move locally during exploitation. 
These two functions as well as target seeking are performed by 
grasshopper naturally.

The proposed algorithm takes the feature of movement of the 
grasshopper to generate a new value for the trial vectors is showed 
in Eq. (8).
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where ubd and lbd are the upper bound and the lower bound in 
the dth dimension. s r fe er l r( ) = - -- , di j,  is the distance between 
ith and jth grasshopper. T d

�  is the value of the dth dimension in the 
target. The parameter c is decreased equivalent to the number of 
iteration to balancing exploration and exploitation is calculated 
as Eq. (9).

   c c l
c c

L
= max -

-max min  (9)

where cmax and cmin are the maximum and the minimum value, 
respectively. l is the current iteration and L is the maximum 
number of iterations.

The rest of the paper is structured as follows. Section 2 describes 
some backgrounds of the differential evolution algorithm. In 
Section 3, the proposed algorithm is presented. Section 4 shows 
the experimental results and the conclusions will be discussed in 
Section 5.

2.  THE DIFFERENTIAL EVOLUTION  
ALGORITHM

The differential evolution algorithm optimizes a problem by sus-
taining a population of candidate solutions and creating new can-
didate solutions by combining existing ones according to its simple 
procedure, and then keeping whichever candidate solution has the 
best score or fitness on the optimization problem at hand.

The procedure of differential evolution algorithm starts to initialize 
target vectors X x x x xi

G
i i j i N i= ( , , ..., , ..., ), , , ,1 2  where i = 1, 2, ..., NP. 

NP is the population size. N is the dimension of the population. 
The superscript G identifies the Gth generation. 

The target vectors are used to generate the mutant vectors 
V v v v vi

G
i i j i N i= ( , , ..., , ..., ), , , ,1 2  in next steps. The DE/current-to-

best/1 mutation scheme is shown in Eq. (1).

   V X F X X F X Xi
G
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G G

i
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G

r
G= + +( ) ( )best 2

- -
1
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where r1 and r2 are integer number chosen from the set {1, 2, ..., 
NP} and must be different from index i. XG

best  is the best solution 
in the generation G. F is used to control amplification of the dif-
ferential evolution. The value of F is set in the range [0, 2]. The 
target vectors and mutant vectors are used to generate the trial 
vectors U u u u ui

G
i i j i N i= ( , , ..., , ..., ), , , ,1 2  in crossover operation to 

increase the diversity of population. The trial vectors are generated  
by Eq. (2).
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if rand CR or
otherwise

rand  (2)

where j = 1, 2, ..., N. rand is a uniform random number chosen in 
the range [0, 1]. CR ∈ [0, 1] is the crossover parameter. jrand  is an 
index randomly chosen in the range [0, N].

The last step is the selection operation to choose a better vector for 
next generation. The new generations are selected by comparing 
the fitness value between the target vector and the trial vector. The 
selection is shown in Eq. (3).

    X
U f U f X
Xi

G i
G

i
G

i
G

i
G

+ =
<ì

í
î

1 , ( ( ) ( ))
,

if
otherwise

 (3)

The whole process is repeated until the termination criteria are 
satisfied or a predefined number of iterations are reached.

3. THE PROPOSED ALGORITHM

The schema of DE/current-to-best/1 in mutation operation is 
updated by splitting F mutation parameter to l and F. The new 
mutation schema is shown in Eq. (4).
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Table 1 | The benchmark functions
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Table 2 | The experimental results

Functions DE/GOA DE FEP PSO

f1 2.35E−220 8.20E−14 5.70E−04 1.36E−04
f2 4.28E−11 1.50E−09 8.10E−03 4.21E−02
f3 3.50E−226 6.80E−11 1.60E−02 70.12562
f4 0 0 3.00E−01 1.086481
f5 28.98017 0 5.06 96.71832
f6 0 0 0 1.02E−04
f7 2.11E−05 4.63E−03 1.42E−01 1.23E−01
f8 −8831.53 −11080.1 −12554.5 −4841.29
f9 6.76E−10 69.20 4.60E−02 46.70423
f10 4.44E−16 9.70E−08 1.80E−02 2.76E−02
f11 0 0 1.60E−02 9.22E−03
f12 2.87E−09 7.90E−15 9.20E−06 6.92E−03
f13 3.01E−08 5.10E−14 1.60E−04 6.68E−03

4. THE EXPERIMENTAL RESULTS

The proposed algorithm has been evaluated performance with thir-
teen benchmark functions [11]. The test functions are unimodal  
( f1 - f7) and multimodal ( f8 - f13). The details of benchmark functions 
are shown in Table 1. The mutation parameters set l, F = 0.5, the 
crossover parameter set CR = 0.9 and population size set NP = 100.

The proposed algorithm was run 30 times on each benchmark 
functions. The average results are summarized in Table 2. The per-
formance of the proposed algorithm is compared with two EAs: 
DE and fast evolutionary programming (FEP) and compared with 
swarm-based algorithm: PSO. The results of DE, FEP and PSO 
were taken from the results reported in Saremi et al. [12].

According to the results of Table 2, DE/GOA is able to provide very 
competitive results. This algorithm outperforms all others in f1, f2, 
f3, and f7. Both DE/GOA and DE were successful to find the optimal 
solution in f4 and f6. In the function f5, only DE could solve the opti-
mum. Therefore, these results show the performance of DE/GOA 
in terms of exploiting the optimum.

The multimodal functions have many local optima with the 
number increasing exponentially with dimension. This makes them  
suitable for benchmarking the exploration ability of an algorithm. 

The experimental showed that DE/GOA is able to provide very 
competitive results on the multimodal benchmark functions  
as well.

The experimental results show that the global search algo-
rithms which added grasshopper optimization algorithm could 
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increase convergence rate because the characteristic of GOA 
is both exploration and exploitation. Meanwhile the results of 
multimodal functions are not perfect that may be due to the 
multimodal functions have many increasing number of local 
optimum.

5. CONCLUSION

This work proposed to improve the DE algorithm performance 
with integrated the GOA. Thirteen benchmark functions were 
employed the performance in terms of exploitation and explora-
tion. The results showed that DE/GOA was able to provide com-
petitive results compared to well known heuristics such as DE, FEP 
and PSO.

REFERENCES

 [1] J.H. Holland, Genetic algorithms, Sci. Am. 267 (1992), 66–72.
 [2] R. Storn, K. Price, Differential evolution – a simple and effi-

cient heuristic for global optimization over continuous spaces,  
J. Global Optim. 11 (1997), 341–359.

 [3] D. Simon, Biogeography-based optimization, IEEE Transactions 
on Evolutionary Computation, IEEE, 2008, pp. 702–713.

 [4] E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, GSA: a gravita-
tional search algorithm, Inform. Sci. 179 (2009), 2232–2248.

 [5] H. Shah-Hosseini, Principal components analysis by the galaxy- 
based search algorithm: a novel metaheuristic for continuous 
optimization, Int. J. Comput. Sci. Eng. 6 (2011), 132–140.

 [6] F.F. Moghaddam, R.F. Moghaddam, M. Cheriet, Curved space 
optimization: a random search based on general relativity theory, 
2012, arXiv:1208.2214 (https://arxiv.org/abs/1208.2214).

 [7] J. Kennedy, R. Eberhart, Particle swarm optimization, Proceedings 
of ICNN’95 - International Conference on Neural Networks, 
IEEE, Perth, WA, Australia, 1995, pp. 1942–1948.

 [8] X.S. Yang, A New Metaheuristic Bat-inspired Algorithm, 
Springer, Berlin, 2010, pp. 65–74.

 [9] I. Fister, I. Fister Jr, X-S. Yang, J. Brest, A comprehensive review of 
firefly algorithms, Swarm Evolution. Comput. 13 (2013), 34–46.

[10] S. Saremi, S. Mirjalili, A. Lewis, Grasshopper optimization algo-
rithm: theory and application, Adv. Eng. Software 105 (2017), 30–47.

[11] X. Yao, Y. Liu, G. Lin, Evolutionary Programming Made Faster, IEEE 
Transactions on Evolutionary Computation, IEEE, 1999, pp. 82–102.

[12] S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. 
Eng. Software 69 (2014), 46–61.

Authors Introduction

http://dx.doi.org/10.1023/a:1008202821328
http://dx.doi.org/10.1023/a:1008202821328
http://dx.doi.org/10.1023/a:1008202821328
http://dx.doi.org/10.1109/tevc.2008.919004
http://dx.doi.org/10.1109/tevc.2008.919004
http://dx.doi.org/10.1016/j.ins.2009.03.004
http://dx.doi.org/10.1016/j.ins.2009.03.004
http://dx.doi.org/10.1504/ijcse.2011.041221
http://dx.doi.org/10.1504/ijcse.2011.041221
http://dx.doi.org/10.1504/ijcse.2011.041221
https://arxiv.org/abs/1208.2214
https://arxiv.org/abs/1208.2214
https://arxiv.org/abs/1208.2214
http://dx.doi.org/10.1109/icnn.1995.488968
http://dx.doi.org/10.1109/icnn.1995.488968
http://dx.doi.org/10.1109/icnn.1995.488968
http://dx.doi.org/10.1007/978-3-642-12538-6_6
http://dx.doi.org/10.1007/978-3-642-12538-6_6
http://dx.doi.org/10.1016/j.swevo.2013.06.001
http://dx.doi.org/10.1016/j.swevo.2013.06.001
http://dx.doi.org/10.1016/j.advengsoft.2017.01.004
http://dx.doi.org/10.1016/j.advengsoft.2017.01.004
http://dx.doi.org/10.1109/4235.771163%0D
http://dx.doi.org/10.1109/4235.771163%0D
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007

