
Journal of Robotics, Networking and Artificial Life
Vol. 5(4); March (2019), pp. 278–282

DOI: https://doi.org/10.2991/jrnal.k.190402.001; ISSN 2405-9021 print; 2352-6386 online
https://www.atlantis-press.com/journals/jrnal

Animated Graphics-based Training Support Method and
Prototype Tool for Bug Fixing of Extended Place/Transition Nets

Tomohiko Takagi1,*, Shogo Morimoto2, Yuki Ue2, Yoshiro Imai1

1Department of Engineering and Design, Faculty of Engineering and Design, Kagawa University, Takamatsu-shi, Kagawa 761-0396, Japan
2Division of Reliability-based Information Systems Engineering, Graduate School of Engineering, Kagawa University, Takamatsu-shi, Kagawa 761-0396, Japan

1.  INTRODUCTION

Formal models in graphical and mathematical languages can give
unambiguous abstracted representation of the behavior of software.
In software development, they are useful to define specifications,
generate program codes, and generate test cases systematically. For
example, in Ho and Lin [1], time Petri nets are used to model real-
time software and generate test cases that focus on its state transi-
tion and timing properties. Katayama et al. [2] show a prototype
tool to generate boundary value test cases from formal specifica-
tions written in VDM++ [3].

In our previous study, an Extended Place/transition Net (EPN) that
is a combination of a PN and VDM++ was proposed and intro-
duced into test case generation [4] and evaluation [5]. The PN is
a kind of Petri nets that can be used to model software from the
viewpoint of its basic state transition. The advantage of the EPN
for the PN is that some complex and essential aspects such as
guards and actions on transitions can be written in VDM++, and
a state of software is closely expressed as a marking and values of
instance variables. The EPN is executable on a tool, and software
engineers can confirm the abstracted behavior of software before
beginning its implementation. However, it would not be so easy for
most of software engineers to learn and use the EPN efficiently. In
general, a formal model with higher representation power requires
software engineers to gain higher degree of expertise and experi-
ence, which will prevent the spread of the formal model in actual
software development. There are only a limited number of software
engineers skilled in formal modeling, and they are too busy to train

unskilled software engineers. Therefore, a training support tool
should be established to solve this problem.

In this study, we are planning to develop a tool to support the train-
ing of formal modeling using EPNs. Different support methods
should be constructed based on the difference of trainees’ achieve-
ment. First, we classified the trainees’ achievement into the follow-
ing two levels:

•• Level 1: A trainee has gained the ability to understand the behav-
ior of software from a given EPN, and fix its bug (i.e., a difference
between the EPN and true software requirements).

•• Level 2: A trainee has gained the ability to construct an EPN
from given software requirements.

As the first step of this study, we have constructed an animated
graphics-based training support method and prototype tool to
achieve the level 1. This paper shows this method, functions of the
prototype tool, and discussion about its effectiveness. The proto-
type tool gives a trainee a faulty EPN and its animated graphics.
The faulty EPN is an EPN that includes an intended bug, and the
animated graphics illustrate the behavior of software based on the
faulty/fixed EPN. The motion of the animated graphics is linked
to (i.e., synchronized with) the motion of the faulty/fixed EPN.
Therefore, it is expected that a trainee can intuitively understand
the EPN, and smoothly try to fix its bug. The prototype tool checks
the result of bug fixing, and evaluates each trainee’s achievement.

The rest of this paper is organized as follows. In Section 2, we pro-
pose an animated graphics-based training support method. Section 3
illustrates the functions of the prototype tool that the core of the pro-
posed method has been implemented into. Section 4 gives discussion

A RT I C L E I N F O
Article History

Received 15 October 2018
Accepted 22 November 2018

Keywords

Training support
software modeling
place/transition net
bug fixing

A B S T R AC T
This paper describes an animated graphics-based training support method for bug fixing of Extended Place/transition Nets
(EPNs), and illustrates a prototype tool that the core of the method has been implemented into. The prototype tool gives a trainee
a faulty EPN and its animated graphics. The motion of the animated graphics is synchronized with the motion of the faulty/fixed
EPN. Therefore, it is expected that a trainee can intuitively understand the EPN, and smoothly try to fix its bug. The result of bug
fixing is checked by the prototype tool. The discussion based on trial application of the prototype tool reveals its effectiveness
and challenges for the future.

© 2019 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

*Corresponding author. Email: takagi@eng.kagawa-u.ac.jp

https://doi.org/10.2991/jrnal.k.190402.001
https://www.atlantis-press.com/journals/jrnal
http://creativecommons.org/licences/by-nc/4.0/
mailto:takagi%40eng.kagawa-u.ac.jp%20%0D?subject=

	 T. Takagi et al. / Journal of Robotics, Networking and Artificial Life 5(4) 278–282	 279

about effectiveness based on trial application of the prototype tool,
and finally Section 5 shows conclusion and future work.

2.  TRAINING SUPPORT METHOD

In this section, we propose an animated graphics-based training
support method for bug fixing of EPNs. This method consists of
(1) creation of exercises, (2) work on exercises, and (3) evaluation.

2.1.  Creation of Exercises

A trainer, i.e., a skilled software engineer creates exercises for
trainees. Each exercise consists of software requirements that were
written in a natural language, an original EPN that was correctly
constructed based on the software requirements, a faulty EPN that
was constructed by inserting an intended bug into the original
EPN, operations to fix the intended bug of the faulty EPN, and ani-
mated graphics that illustrate the behavior of software based on the
faulty/fixed EPN.

An intended bug can be created by applying existing mutation
operators to an original EPN. A good exercise includes an intended
bug that cannot be easily found and is likely to be made in actual
software development.

The operations for bug fixing are defined as a pair (or pairs) of a
kind of existing mutation operators, and the number of times to
apply the mutation operator to a faulty EPN. For example, when
(arc addition, 2) is defined as operations, correct bug fixing can be
achieved by adding two arcs somewhere to a faulty EPN. In other
words, the intended bug of the faulty EPN would be created by (arc
deletion, 2).

The motion of animated graphics needs to be synchronized with
the motion of the faulty/fixed EPN that is shown as the change of
its current state (i.e., its current marking and values of instance
variables) and the highlighting of a recently fired transition.
Trigger of motion in the animated graphics is the fire of a transi-
tion in the faulty/fixed EPN; on the contrary, trigger of the fire of
a transition can be the result of motion in the animated graphics.
The definition of the trigger in an EPN and its animated graphics
is one of trainer’s tasks.

2.2.  Work on Exercises

A trainee selects an exercise, and works on it. Software require-
ments, a faulty EPN, and operations for bug fixing are given to the
trainee on the exercise. In our method, there are the following two
options for the synchronous motion of the faulty/fixed EPN and its
animated graphics.

•• Option 1: A trainee can view the synchronous motion at any time.

•• Option 2: A trainee can view the synchronous motion after fin-
ishing his/her bug fixing.

If the option 1 is chosen, animated graphics also need to be given
to the trainee from this phase. It is expected that the trainee can
intuitively understand the faulty EPN from the animated graphics.

If the trainee has found a difference between the faulty EPN and
the software requirements, he/she tries to remove an intended bug
from the faulty EPN. The trainee can modify the faulty EPN by
using only the given operations for bug fixing. Modification to
the faulty EPN is reflected on the animated graphics, and thus the
trainee can confirm the result of his/her bug fixing by viewing the
synchronous motion of the fixed EPN and its animated graphics.

The motion of the animated graphics should be strictly linked to
the motion of the faulty/fixed EPN. In order to achieve it, the fol-
lowing procedure is automatically performed based on the trigger
definitions.

	(i)	 In the faulty/fixed EPN, each transition is checked whether it
can fire or not. A transition is fireable, if all from-places of
the transition contain the required number of tokens, and the
guard of the transition is true. If there are no fireable transi-
tions, it will be a failure that was caused by an intended bug or
an incorrect bug fix, and this procedure is terminated.

	(ii)	 If a trigger event occurs in the animated graphics, a transition
relating to the trigger event is identified in the faulty/fixed EPN.
If the transition is fireable, corresponding motion in both of
the faulty/fixed EPN and the animated graphics is invoked, and
then this procedure returns to (i). If the transition is not fire-
able, it will be a failure that was caused by an intended bug or an
incorrect bug fix, and this procedure is terminated.

	(iii)	 A fireable transition is randomly selected, and then corre-
sponding motion in both of the faulty/fixed EPN and the ani-
mated graphics is invoked. This procedure returns to (i).

If the above-mentioned procedure is terminated, all the motion is
stopped, and then, the faulty/fixed EPN and the animated graphics
return to their initial states.

2.3.  Evaluation

When a trainee has finished his/her bug fixing, the fixed EPN is
automatically compared with the original EPN. If they are the
same, it is judged as correct bug fixing. If they are not the same, it is
judged as incorrect bug fixing, and the trainee is suggested to retry
the exercise. The trainee is shown not only the judgement (correct
or incorrect) but also the synchronous motion of the fixed EPN
and its animated graphics. The synchronous motion will help the
trainee to understand the judgement.

The time taken for the completion of correct bug fixing, and the
number of incorrect bug fixing are recorded in order to evaluate
not only trainees’ achievement but also the quality of exercises.

3. � PROTOTYPE OF A TRAINING
SUPPORT TOOL

The core of the training support method proposed in the previ-
ous section has been implemented as a prototype tool. This section
illustrates its functions.

The prototype tool has been constructed as a Web application in
order that trainees can use it easily. The aim of this prototyping is to

280	 T. Takagi et al. / Journal of Robotics, Networking and Artificial Life 5(4) 278–282

evaluate the effectiveness of animated graphics against understand-
ability of EPNs, and thus it does not include the implementation of
functions to help the creation of exercises. Also, only model-based
mutation operators [6] are introduced to prepare faulty EPNs and
operations for bug fixing.

First, a trainee needs to log on to the prototype tool by using a Web
browser, and select an arbitrary exercise on a top page shown in
Figure 1. The top page provides the information about each exer-
cise, including its title, degree of difficulty that was supposed by a
trainer, time taken for the completion of correct bug fixing, and
number of incorrect bug fixing.

Soon after clicking a title of a desired exercise on the top page, a
trainee receives a corresponding training page. A training page
consists of software requirements, animated graphics, a faulty EPN,
operations for bug fixing, and some buttons (an “Answer” button,
a “Retry” button, buttons for operations for bug fixing, and so on).
When selecting “Crossing Gate Control System” [7] from the list
shown in Figure 1, the trainee receives the training page shown
in Figure 2. The animated graphics are formed from map chips
(blocks to form a map, such as rails and a road) and motion objects
on the map (such as a train and a crossing gate). The operation for

bug fixing in this exercise is (arc deletion, 1), and therefore a “X”
button to apply a mutation operator of arc deletion only once is
provided on the pane that contains the faulty EPN of the crossing
gate control system. The trainee pushes the “X” button, and clicks
an arc of the faulty EPN to delete it. In Figure 3, the arc from T5 to
P10 has been deleted from the faulty EPN. The number on a button
for operations for bug fixing tells how many times its mutation
operator needs to be applied to a faulty EPN, and it decreases with
application, as shown in Figures 2 and 3. A button for operations
for bug fixing becomes unavailable if its number reaches 0. Also, a
trainee can push the “Retry” button to undo all his/her operations
at any time.

Soon after pushing the “Answer” button, the trainee is notified
whether his/her bug fix is correct or not. Additionally, the train-
ing page shows the synchronous motion of the fixed EPN and
its animated graphics. The motion can be controlled by using
fast/normal/slow play buttons and a stop button. Figures 4 and 5
give the screen shots of the training page on the subject of the

Figure 1 | Top page providing the list of exercises.

Figure 2 | Training page (initial state). Figure 4 | Training page (answering a correct bug fix).

Figure 3 | Training page (modifying a faulty EPN).

	 T. Takagi et al. / Journal of Robotics, Networking and Artificial Life 5(4) 278–282	 281

crossing gate control system, just after pushing the “Answer”
button. In Figure 4, the trainee has successfully fixed the
intended bug, and the synchronous motion of the fixed EPN
and its animated graphics shows that the crossing gate closes
with the approach of a train. On the other hand, in Figure 5, the
crossing gate does not close in spite of the approach of a train,
since the trainee has failed in bug fixing. The trainee can undo
his/her incorrect bug fixing, and retry this exercise by pushing
the “Retry” button.

Note that the option 2 (see Section 2.2) was basically chosen,
and therefore a trainee cannot view the synchronous motion of
a faulty/fixed EPN and its animated graphics before pushing the
“Answer” button in the prototype tool, which will encourage a
trainee to carefully view and think about the EPN at first. When
a trainee cannot understand a given faulty EPN, he/she pushes
the “Answer” button without any modification and can view the
synchronous motion.

4.  DISCUSSION

This section gives discussion about effectiveness based on trial
application of the prototype tool.

We created six exercises on the subject of a crossing gate control
system and an elevator control system, and set them to the proto-
type tool. After that, a graduate student who is studying a test case
generation technique based on EPNs in our laboratory worked on
the exercises on the prototype tool. As a result of this trial appli-
cation, he succeeded in all bug fixing. His average time to finish
correct bug fixing is about 133 seconds, and his average number of
incorrect bug fixing is three. Finally, we and the graduate student
entered a free discussion, and the following opinions were obtained:

	(a)	 The prototype tool is of high quality, and animated graphics
seem to accelerate trainee’s understanding for EPNs.

	(b)	 However, some exercises have lower degree of difficulty, since
same original EPNs and their animated graphics are reused to
reduce the cost of creating exercises.

	(c)	 Trainer’s effort will be largely devoted to creating animated graph-
ics, and a technique and tool need to be developed to support it.

	(d)	 The quality of intended bugs will depend on the degree of
expertise and experience of a trainer. Heuristic approaches
such as a genetic algorithm will be able to be applied to support/
automate the creation of good intended bugs.

	(e)	 A trainee will not know which exercise to select. It is better
that the prototype tool can suggest appropriate exercises for
each trainee, according to his/her achievement.

	(f)	 It will be better to allow a trainee to choose between the
options 1 and 2, since some trainees (especially beginners)
will want to view the synchronous motion from the first. The
option 2 seems to be suitable for trainees that have learned
EPNs to some extent.

	(g)	 If the prototype tool provides a function that helps trainees
and trainers to interact with one another, it may be useful to
support their training and creation of exercises.

	(h)	 Some user interfaces should be improved.

The items from (b) to (e) are important, and are our challenges for
the future. If (c) is addressed, (b) will be improved. The items from
(f) to (h) will not be difficult problems, and (f) was addressed after
we had finished the trial application.

5.  CONCLUSION AND FUTURE WORK

In this paper, we have proposed an animated graphics-based train-
ing support method for bug fixing of EPNs, and showed a prototype
tool that the core of the proposed method has been implemented
into. As a result of trial application of the prototype tool, we found
that animated graphics seem to accelerate trainee’s understand-
ing for EPNs, but the cost to create good exercises is not small. To
improve this problem, we will construct a technique and tool to
assist the creation of animated graphics and intended bugs. Also,
we plan to develop a function to suggest appropriate exercises auto-
matically for each trainee, according to his/her achievement.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant Number
JP17K00103.

REFERENCES

[1]	 I. Ho, J-C. Lin, Generating test cases for real-time software by time
Petri nets model, Proceedings of Eighth Asian Test Symposium
(ATS’99), IEEE, Shanghai, China, 1999, pp. 295–300.

[2]	 T. Katayama, H. Tachiyama, Y. Kita, H. Yamaba, K. Aburada,
N. Okazaki, BWDM: test cases automatic generation tool based
on boundary value analysis with VDM++, J. Robot. Netw. Artif.
Life 4 (2017), 110–113.

[3]	 J. Fitzgerald, P.G. Larsen, P. Mukherjee, N. Plat, M. Verhoef,
Validated designs for object-oriented systems, Springer-Verlag
London, 2005.

Figure 5 | Training page (answering an incorrect bug fix).

https://doi.org/10.1109/ats.1999.810766
https://doi.org/10.1109/ats.1999.810766
https://doi.org/10.1109/ats.1999.810766
https://doi.org/10.2991/jrnal.2017.4.2.1
https://doi.org/10.2991/jrnal.2017.4.2.1
https://doi.org/10.2991/jrnal.2017.4.2.1
https://doi.org/10.2991/jrnal.2017.4.2.1

282	 T. Takagi et al. / Journal of Robotics, Networking and Artificial Life 5(4) 278–282

[4]	 T. Takagi, T. Katayama, Negative test case generation from an
extended place/transition net-based mutants, Proceedings
of the 2018 International Conference on Artificial Life and
Robotics (ICAROB2018), ALife Robotics, Oita, Japan, 2018,
pp. 513–516.

[5]	 T. Takagi, S. Morimoto, T. Katayama, Development of a tool
for extended place/transition net-based mutation testing and
its application example, J. Robot. Netw. Artif. Life 4 (2017),
168–174.

[6]	 T. Takagi, R. Takata, Z. Furukawa, F. Belli, M. Beyazıt, Metrics
for model-based mutation testing based on place/transition
nets, Proceedings of the Joint Conference of 21st International
Workshop on Software Measurement and Sixth International
Conference on Software Process and Product Measurement
(IWSM-MENSURA), Nara, Japan, 2011, pp. 7–10.

[7]	 N.G. Leveson, J.L. Stolzy, Safety analysis using Petri nets,
IEEE Transactions on Software Engineering, IEEE, USA, 1987,
pp. 386–397.

Authors Introduction

Dr. Tomohiko Takagi

Dr. Tomohiko Takagi received the B.S.,
M.S. and PhD degrees from Kagawa
University in 2002, 2004 and 2007,
respectively. He became an assistant
professor in 2008, and a lecturer in 2013
in the Faculty of Engineering at Kagawa
University. Since 2018 he has been an
associate professor in the Faculty of
Engineering and Design at Kagawa

University. His research interests are in software engineering,
particularly software testing.

Mr. Shogo Morimoto

Mr. Shogo Morimoto received the B.S.
degree from Kagawa University in 2017.
He is a master’s student in the Graduate
School of Engineering at Kagawa Univer
sity. His research interests are in soft-
ware engineering, particularly software
testing.

Mr. Yuki Ue

Mr. Yuki Ue received the B.S. degree from
Kagawa University in 2018. He is a mas-
ter’s student in the Graduate School of
Engineering at Kagawa University. His
research interests are in software engi-
neering, particularly software design.

Dr. Yoshiro Imai

Dr. Yoshiro Imai received the B.S. degree
from Kyoto University in 1980 and the
PhD degree from Tokyo University of
Agriculture and Technology in 2008.
He became an associate professor in
1997 at Kagawa University. Since 2018
he has been a professor in the Faculty
of Engineering and Design at Kagawa
University. His research interests are

in computer architecture, system software and their e-Learning
tools development.

https://doi.org/10.5954/icarob.2018.os12-1
https://doi.org/10.5954/icarob.2018.os12-1
https://doi.org/10.5954/icarob.2018.os12-1
https://doi.org/10.5954/icarob.2018.os12-1
https://doi.org/10.5954/icarob.2018.os12-1
https://doi.org/10.2991/jrnal.2017.4.2.14
https://doi.org/10.2991/jrnal.2017.4.2.14
https://doi.org/10.2991/jrnal.2017.4.2.14
https://doi.org/10.2991/jrnal.2017.4.2.14
https://doi.org/10.1109/tse.1987.233170
https://doi.org/10.1109/tse.1987.233170
https://doi.org/10.1109/tse.1987.233170

