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1.  INTRODUCTION

It is widely known that what we see is not the visual sensory input 
as it is. Instead, our brains integrate the sensory inputs and recon-
struct the internal image in the manner we can easily understand. 
For example, although the actual visual input is 2D and received 
by both eyes, what we see is the 3D vision as one image. However, 
exactly how the internal visual perceptions are generated in the 
visual cortex has provoked much debate.

The predictive coding is one of the most accepted hypotheses on the 
internal perception. In the predictive coding framework, a perceived 
image is not merely the integrated visual sensory input, but the result 
of the prediction made by the internal generative model. The predic-
tive coding also assumes that the generative model is optimized to 
minimize the residual error between the prediction and the actual sen-
sory input. In particular, the hierarchical predictive coding model [1] 
postulates that the top-down signals from the higher-order area carry 
the predictions of lower-level neural activities, whereas the bottom-up 
signals from the lower-order area carry the residual errors between the 
predictions and the actual lower-level activities, so that the ascending 
signals have much less redundancy.

However, this model is only suitable for static visual inputs and 
cannot deal with temporally changing visual images, or movies. 
Then Fukino et al. [2] proposed the Predictive Coding with 

Reservoir Computing (PCRC) model, which can predict the  
temporally changing auditory inputs, implementing the generative 
model by the dynamical reservoir. Furthermore, the hierarchical 
PCRC models for more complex auditory inputs were proposed by 
Ara and Katori [3,4].

Here, the reservoir computing [5] refers to a type of the Recurrent 
Neural Network (RNN) approach with a simple learning strategy. 
When the reservoir computing networks are trained, only the 
output connections are modified, and the recurrent and feedback 
connections are fixed with randomly given values.

However, precisely how these PCRC models [2–4] work largely 
remains to be clarified. Moreover, these conventional models 
cannot perceive unlearned inputs. In addition, they are not exactly 
driven by the prediction error but by the sum of the error and their 
own prediction, which is equal to the original sensory input.

In this study, therefore, we first modify them and construct a 
simple one-layer PCRC network exactly driven by the prediction 
errors, which can perceive even unlearned inputs. Then we analyze 
the nonlinear dynamics underlying the trained network, in order to 
clarify the mechanism of the behavior.

The influence of contexts, which refers to situations, goals, and rel-
evant past experiences, is another important factor on the visual 
perception. For example, even identical sensory stimuli can result 
in very different perceptions depending on contexts. Indeed, RNN 
models for context-dependent tasks have been proposed [6].
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A B S T R AC T
The predictive coding is a widely accepted hypothesis on how our internal visual perceptions are generated. Dynamical predictive 
coding with reservoir computing (PCRC) models have been proposed, but how they work remains to be clarified. Therefore, 
we first construct a simple PCRC network and analyze the nonlinear dynamics underlying it. Since the influence of contexts 
is another important factor on the visual perception, we also construct PCRC networks for the context-dependent task, and 
observe their attractor-landscapes on each context.
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Therefore, we also construct a PCRC network for a simple context- 
dependent perception task. We analyze the trained network again, 
in order to reveal how the network perceives the sensory stimuli  
on each context. We further construct a PCRC network which can 
perceive more high-dimensional visual inputs, in order to show 
that the proposed network can be a possible mechanism of the 
visual perception. We observe that the mismatch between the con-
text and the type of sensory stimuli induces the perceptual error, 
which exhibits complex visual features.

2.  SIMPLE PCRC

In this section, we construct a simple one-layer PCRC network 
exactly driven by the prediction errors. We also analyze the non-
linear dynamics underlying the trained network to elucidate how 
it works.

2.1.  Network Architecture and Dynamics

We use a leaky-integrator RNN, defined by the equation:

	 t �x x z d z= − + + + −W W WREC FB INr ( ),� (1) 

where t is the membrane time constant, N is the number of neu-
rons, x(t) := (x1(t), ..., xN(t))T ∈ N represents the membrane poten-
tials or activities of the neurons at time t ∈ , and r := (ϕ(x1), ..., 
ϕ(xN))T ∈ N represents the firing rates of the neurons with ϕ(x) := 
tan h(x). WREC ∈ N×N is a random recurrent connectivity matrix, 
whose elements are sampled i.i.d. from N(0, g2/N) with the param-
eter g ∈ . M is the dimension of the input and output. The output 
of the network z := WOUT r ∈ M represents the prediction and is 
fed back through weights WFB ∈ N×M, whose elements are inde-
pendently and uniformly sampled from [−1, 1]. The residual error 
between the target (or sensory input) d(t) ∈ M and the prediction 
z(t) is fed through weights WIN ∈ N×M, whose elements are inde-
pendently and uniformly sampled from [−1, 1]. The output weights 
WOUT ∈ M×N are initially set to all zero, and modified during train-
ing. Note that the last term is unique to the PCRC network. This 
network architecture is illustrated in Figure 1, though contexts are 
ignored in this section.

In order to simulate this dynamics numerically, we introduce the 
discrete-time version of Equation (1), derived by Euler method:
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where n ∈  is the discrete time step, d is the small time interval, 
and other notations follow Equation (1).

Throughout this paper, we use N = 1000, g = 1.2, t = 100 ms, and 
d = 10. In this section, we use M = 2 for visibility of the dynamics.

2.2.  Task

We present the constant vectors d1,..., dND ∈ M in turn as the sen-
sory inputs to the network, where ND is the number of trials. The 
network is trained to keep outputting the target di until the next 
target di+1 is presented, at each ith trial. Each sensory input di is pre-
sented for 0.2 s, and its elements are independently and uniformly 
sampled from [1, 2].

Since the network actually receive the prediction error di – z(t) as 
the input, it is required to decode this error into the original sensory 
input di. This corresponds to the framework of the predictive coding.

2.3.  Learning Rule

We train WOUT by Fast Order Reduced and Controlled Error 
(FORCE) learning algorithm [7], which is based on the recursive 
least square filter. Its update rule is:

	 e r d( ) : ( ) ( ) ( )t W t t t t= - -OUT D ,� (3) 
	 s r r r( ) : ( ) ( ) ( ( ) ( ) ( ))t P t t t t P t t tT= - + - -D D1 1,� (4) 
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where the initial value for P(t) ∈ N×N is given by

	 P I( ) ,0
1

= Î
a

a( ) .� (7) 

In this algorithm, the inverse of P(t) is a running estimate of the auto-
correlation matrix of the firing rates r(t) plus a regularization term:

	 P t t t dt IT- = ò +¢ ¢ ¢1( ) ( ) ( )r r a .� (8) 

Throughout this paper, we use a = 0.02 and Δt = d.

2.4.  Results and Analysis

We trained the network for 1000 trials. (i.e., ND = 1000). At each 
trial in the test phase, the sensory input di is presented for 5.0 s. As 
shown in Figure 2, the training resulted in almost perfect perfor-
mance. Figure 2 also shows that at the beginning of each ith trial,  
the prediction error di – z(t) is fed to the network as a sharp pulse, 
but it immediately decays to zero and the network settles into a 
fixed point x i  where z(t) ≡ di.

In order to reveal the underling mechanism of this behavior, we 
analyze the nonlinear dynamics of the trained network. In what 

Figure 1 | Schematic chart of the one-layer PCRC network architecture. 
Only the output weights (red) are modified during training.
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follows, we regard the term WIN (d – z) as the external force and 
separate it from the network’s own dynamics, because of its pulse-
like behavior, i.e., we here analyze the dynamics:

	 t �x x r z= - + +W WREC FB .� (9) 

Following the approach of Sussillo and Barak [8], we define the 
scalar function q(x) := |x. |2/2, which is near to zero if x is an 
approximate fixed point, or a slow point. Figure 3a shows that 
almost all the q values at the end of trials are very low, and the 
corresponding slow points are located on a 2D-manifold in the 
phase space. Figure 3a also shows that at the beginning of each ith 
trial, the pulse-like prediction error di – z(t) drives the trajectory 
out of the 2D-manifold, but in the subsequent relaxation phase, 
the trajectory is attracted by the 2D-manifold, and the projection 
of the trajectory onto the manifold corresponds to the total move-
ment di – di–1.

Furthermore, by analyzing the linearized system around each 
slow point on the 2D-manifold, we uncover the stability of 
this manifold. Linearizing Equation (9) around the slow point 
x x( ( ) )q � 0 , we obtain the dynamics about the perturbation 
d x x x:= - :
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where ¢ = ¢R xij ij i( ) : ( )x d f .

As for almost all the slow points, the linearized systems around 
them have only eigenvalues with the negative real part, as shown 
in Figure 3b. This suggests that almost all the slow points are 
locally stable, and the 2D-manifold composed of them attracts 
any trajectories in the vicinity of it. Nevertheless, this manifold 
attractor is not fully continuous and there is a slow flow on it. 
Then the trajectory on the manifold is attracted by the specific 
slow point on the manifold where the output z(t) is near to but 
not equal to the target di, which leads to the little prediction 
error shown in Figure 2.

Up to this point, the trained network has exhibited the perfor-
mance only on the discontinuously changing sensory inputs. 
Here we show that the same network can also perceive the 
continuously changing sensory inputs. For example, Figure 4a 
shows that the network output succeeded in following the sinu-
soidal input. In this case the network trajectory x(t) keeps trav-
elling around the 2D-manifold in the phase space, as shown in 
Figure 4b. This behavior results from the balance between the 
attracting force from the 2D-manifold and the driving force by 
the prediction error d(t) – z(t). Even in the general case, the 
same mechanism enables the network to perceive the continu-
ously changing input.

Throughout this section, we have shown the case of M = 2 for 
simplicity, but the same scenario holds for the case of general M.

3.  CONTEXT-DEPENDENT PCRC

In this section, we construct a simple PCRC network for the 
context-dependent perception task. We also analyze the trained 
network to elucidate how it switches the processing depending 
on contexts.

Figure 2 | The response of the trained network in the test phase. The 
1st row represents the activities of the reservoir x(t), red plots in the 2nd 
and 3rd row represent the target d(t), green plots in the 2nd and 3rd row 
represent the output z(t), and the 4th row represents the prediction error 
d(t) – z(t).

Figure 3 | (a) The locations of the slow points x i  for the entire target 
range di ∈ [1, 2]2 in 3D principal component analysis space. The color 
scale of each slow point represents the value of q i( )x . The orange points 
represent an example of the trajectory of x(t) during a trial. (b) A typical 
example of the eigenvalue spectrum of the Jacobian at slow points on the 
2D-manifold.

(a) (b)

Figure 4 | The response of the trained network to a continuously changing 
sensory input. (a) The activities of the reservoir x(t) (the 1st row), the 
target d(t) (red plots in the 2nd and 3rd row), the output z(t) (green plots 
in the 2nd and 3rd row), and the prediction error d(t) – z(t) (the 4th row). 
(b) The trajectory of x(t) (orange) and the 2D-manifold composed of the 
stable slow points (blue) in 3D PCA space.

(a) (b)
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3.1.  Network Architecture and Dynamics

We add to Equation (1) the term of the context signal from external 
modules:

	 t �x x r z d z= - + + + - +W W W WREC FB IN CON( ) c � (11) 

where the context c(t) ∈L is fed through weights WCON ∈ N×L, 
whose elements are independently and uniformly sampled from 
[−1,1]. In this section we use M = 4 and L = 2 for simplicity, and the 
other settings follow Section 2.

3.2.  Task and Learning Rule

We present the constant vectors d1,…,dND ∈ M in turn as the sen-
sory inputs to the network, and train the network to keep output-
ting each given constant vector until the next target is presented. 
We also present the context c1 := (0,1)T during the 1st to ND/2th 
trials, and the context c2 := (1, 0)T during the ND/2+1th to ND

th trials, 
respectively. Each sensory input di is presented for 0.2 s, and its 
elements are given as d i i i i i Td d d d= ( , / , , / )1 1 2 21 1  on the context c1 and 
d i i i i i Td d d d= ( , , / , / )1 2 2 12 2  on the context c2, respectively. At each 
trial di

1  and di
2  are independently and uniformly sampled from 

[1, 2]. Note that the essential dimension of the input is M/2 on each 
context, but the trained network is required to switch the type of 
processing depending on contexts.

We train WOUT by FORCE learning algorithm used in Section 2.

3.3.  Results and Analysis

We trained the network for 1000 trials on each context c1 and c2. 
(i.e., ND = 2000). At each trial in the test phase, the sensory input di 
is presented for 1.0 s. As shown in Figure 5a, the training resulted 

in almost perfect performance, and the pulse-like prediction error 
drives the network from one slow point to another, as with the 
context-free case in Section 2. Figure 5b shows that the two differ-
ent 2D-manifold attractors are formed for the contexts c1 and c2, 
respectively. This suggests that the network switches its attractor- 
landscape depending on contexts, and the same mechanism as 
Section 2 enables the network to perceive the sensory inputs on 
each context.

We next evaluate the performance of the trained network 
when the type of the sensory input (d i i i i i Td d d d= ( , / , , / )1 1 2 21 1  or 
( , , / , / )d d d di i i i T

1 2 2 12 2 ) does not match the context. In this case, we 
present each sensory input di for 5.0 s. Figure 6 shows that the con-
text mismatch keeps the prediction errors apart from zero, so that 
the network fails to perceive the sensory inputs, but nevertheless 
the network trajectories sometimes settle into slow points.

4. � CONTEXT-DEPENDENT PCRC  
FOR VISUAL DATA

In this section, we construct a context-dependent PCRC network 
which can perceive more high-dimensional visual inputs, in order 
to demonstrate that the proposed network can be a possible mecha-
nism of the visual perception. We also observe the complex features 
of the perceptual error induced by the context mismatch.

4.1. � Network Architecture, Task, and  
Learning Rules

The network architecture and settings follow those of Section 3, 
except the dimension of the input and output: M = 20.

We use the Mixed National Institute of Standards and Technology 
(MNIST) data set, which is widely used for handwritten numeral 
recognition tasks, as the high-dimensional visual sensory stimuli. 
As the preprocessing, we first compress the MNIST data whose 
labels are “0” or “1” into 20 dimension, using the Non-negative 
Matrix Factorization (NMF). We next randomly choose one of the 
compressed MNIST data as the sensory input di and present it to 
the network for 0.2 s at each ith trial. At the same time, we present 
the context c1 if di has “0” label, and the context c2 if di has “1” 
label, respectively. (i.e., each context represents the category of the 
visual sensory input). We train the network to keep outputting the 
presented sensory input di during each trial. In the test phase, we 
present to the network unlearned compressed MNIST data as the 

Figure 5 | The context-dependent response of the trained network. (a) 
The activities of the reservoir x(t) (the 1st row), the target d(t) (red plots in 
the 2nd and 3rd row), the output z(t) (green and purple plots in the 2nd and 
3rd row), and the prediction error d(t) – z(t) (the 4th row). (Left: context c1. 
Right: context c2). (b) The locations of the slow points x i  for the entire 
target range ( , ) [ , ]d di i

1 2
21 2Î  in 3D PCA space. (Blue: on the context c1. 

Red: on the context c2).

Figure 6 | The perceptual errors induced by the context mismatch. (Left: 
d i i i i i Td d d d= ( , / , , / )1 1 2 21 1  on the context c2. Right: d i i i i i Td d d d= ( , , / , / )1 2 2 12 2 

d i i i i i Td d d d= ( , , / , / )1 2 2 12 2  on the context c1).

(a)

(b)
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sensory inputs. The trained network is required to form slow points 
that correspond to even unlearned MNIST data in its phase space.

We use the FORCE algorithm again during training.

4.2.  Results and Analysis

We trained the network for 2000 trials on each context c1 and c2. (i.e., ND 
= 4000). At each trial in the test phase, we present a randomly chosen 
unlearned MNIST data for 5.0 s as the sensory input di. Figure 7a  
shows that the training network almost succeeded in perceiving 
unlearned MNIST inputs, and the pulse-like prediction error drives 
the network from one slow point to another, as with the case above. 
Figure 7b shows that the two different manifold attractors are formed 
for the “0” label and “1” label MNIST inputs respectively, but in the 3D 
PCA space we cannot observe the actual shapes of these manifolds.

We next evaluate the performance of the trained network when the 
label of the sensory input does not match the context. As shown in 
Figure 8, the context mismatch keeps the prediction errors apart from 
zero, but nevertheless the network trajectories settle into slow points.

We further visualize these errored predictions z at slow points and 
compare them with the original inputs d, by inversely transform-
ing the output z into the dimension of the original MNIST data, 
using the matrix generated in NMF. As a result, in the errored 
predictions, the original sensory inputs and the predictions for 
the wrong label MNIST image overlap each other, as illustrated 
in Figure 9.

5.  DISCUSSION

We first proposed the simple one-layer PCRC network driven by 
the prediction error, which can perceive even unlearned inputs. 
We analyzed the nonlinear dynamics underling the trained net-
work, and revealed that the network perceives the sensory stim-
uli using the low-dimensional manifold attractor in its phase 
space. Since low-dimensional manifold attractors have also been 
observed in the trained RNNs in previous studies [6,8,9], it can 
be a natural strategy for RNNs to use them for the information 
processing.

Next, we constructed the simple PCRC network for the context- 
dependent task, and observed that the different attractor-landscape  
is formed on each context. Throughout this study, we used the 
PCRC networks with only one layer and assumed the context sig-
nals to be fed from the external module, for simplicity. However, the 
hierarchy plays a key role in the predictive coding framework [1],  
and how the context signals are generated remains to be clarified. 
Therefore, it is our future work to build the hierarchical PCRC 
model composed of the one-layer networks which are analyzed in 
this study, and incorporate the modules which generate the context 
signals inside the model.

Finally, we constructed the context-dependent PCRC network 
for the compressed MNIST data task, and demonstrated that the 
proposed network can be a possible mechanism of the visual per-
ception. The perceptual errors induced by the context mismatch 
exhibited complex features, and interestingly, they share some 
common features with the symptoms of the hallucination in 
dementia with Lewy bodies [10], in which the patients see other 
people who are not there on the background which actually exists 
there. It is also our future work to study the relation between these 
perceptual errors.

Figure 8 | The perceptual errors induced by the context mismatch.  
(Left: label “0” data are presented on the context c2. Right: label “1” data 
are presented on the context c1).

Figure 9 | The examples of the visualized comparison between the 
original inputs d and errored predictions z on the context mismatch.  
(Left: label “0” data are presented on the context c2. Right: label “1” data 
are presented on the context c1).

Figure 7 | The context-dependent response of the trained network to 
unlearned MNIST inputs. (a) The activity of the reservoir x(t), the output 
z(t), the target d(t) and the prediction error d(t) – z(t). (Left: context c1. 
Right: context c2). (b) The locations of the slow points x i  in 3D PCA 
space on the context c1 (red) and on the context c2 (blue), respectively.

(a)

(b)
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