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1.  INTRODUCTION

Discrete optimization is a generic term for mathematical pro-
gramming that minimize or maximize a given function f(x) 
under the constraint that the solution x belongs to a set feasible 
region with discrete properties. It is depending on whether the 
condition that defines the set feasible area is a combinational 
condition or an integer condition, it may be roughly divided 
into combinatorial optimization and integer optimization. In 
this research area, there are researchers who try to capture the 
characteristics of the optimization function f(x) to make optimi-
zation easy to handle [1]. We are also interested in the properties 
of this optimization function. In the area of discrete optimiza-
tion, there are many interesting properties that facilitate the 
optimization task [2]. One of them is monotony. Monotonic 
submodular functions have recently been applied in the field of 
machine learning. This paper focuses on optimization functions 
that are monotonic functions.

The Partial Order Evolutionary Algorithm (PO-EA) model intro-
duced by Jansen [3] contributes to the analysis of performance in 
linear functions and is expected to simulate the optimization of 
monotonic functions [4,5]. PO-EA is a pessimistic model of the 
true optimization process, which can be used to derive an upper 
bound on the expected hitting time of monotonic functions. 
PO-EA was divided into two parts by Ma et al. [6]. These are called 
PO-mutation and ZeroMax models, respectively. In this study,  

we used a PO-mutation model. The PO-mutation model contains 
mutations that increase the fitness of every monotonic function.

In this study, we assumed that the optimum binary string is {1}l, 
and use typical monotonous discrete linear functions on (1 + 1) 
EA, PO-mutation and PO-EA. The optimum hitting time calcu-
lated by computer experiments could confirm the contribution of 
(1 + 1) EA, PO-mutation and PO-EA, and help to understand the 
mechanism of the optimization process of EA.

2.  MATHEMATICAL MODELS OF EAs

An EA is a generic term for a search model or algorithm for searching 
for an optimal solution by imitating the process of inheritance or evo-
lution of an organism. This method evolves a group of solutions and 
obtains an optimal solution by repeating generational change based 
on change and selection on a problem. We can apply to various prob-
lems as long as we can represent gene numbers and set fitness evalua-
tion functions. However, even in the case where a single search can be  
performed in a short time, a problem in which the number of all solu-
tions is enormous may take too much time for the calculation itself and 
may not reach an effective solution. EA can be classified into genetic 
algorithm, evolutionary strategy, and evolutionary programming.

In this study, we use the simplest (1 + 1) EA, in which both the 
number of parent and offspring genes are one [7]. Genes are rep-
resented by binary string. A gene of length i can be written as  
(x1, x2, ..., xi) (where xi = 0 or 1). In addition, gene mutation means 
that the value of each xi is inverted according to the probability pm. 
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We called it mutation probability. If the function f(x) is defined in 
an interval [a, b] and f(x) ≤ f(x′) for any x, x′ (x < x′) in the interval, 
f(x) is said to be a monotonically increasing function in the interval  
[a, b]. If f(x) ≥ f(x′), then f(x) is said to be a monotonically decreas-
ing function in the interval [a, b]. These are generically called 
monotonic function.

In the past research, Furutani et al. [8] analyzed the expected hit-
ting times of EAs and Random Local Search by applying Markov 
chain. They showed that using pm = 1/l, the runtime of the Markov 
chain is approximately given by l log(l), where l is the length of the 
gene and l is large enough. In this study, we also set pm = 1/l.

3.  EVOLUTIONARY ALGORITHMS

3.1.  (1 + 1) Evolutionary Algorithm

(m + l) Evolutionary algorithm came from Evolutionary Strategy 
developed by Rechenberg and Schwefel, where m and l are num-
bers of parent and offspring solutions, respectively. We set m = 1 
and l = 1. These are the simplest combinations, and represented 
by (1 + 1) EA. It is too simple for an analysis, it has following 
properties [2].

(1) � It is efficient for many problems.
(2) � It cannot get stuck in a local optimum.
(3) � The analysis of it reveals many tools that can be used in more 

practical algorithms.

The algorithm of (1 + 1) EA is given by Algorithm 1. In this algo-
rithm, x are binary strings and f(x) are optimization functions.

Algorithm 1 | (1 + 1) EA

1: Initialize x ∈ {0, 1}l uniformly at random.
2: Create x′ by flipping one each bit in x with probability pm.
3: Select if f(x′) ≥ f(x) then x := x′.
4: Go to 2 until a termination condition is fulfilled.

3.2.  PO-mutation Algorithm

Colin et al. [5] have shown that PO-EA can be divided into two 
parts. Ma et al. [6] have named it PO-mutation and ZeroMax 
models. They treated two selection conditions, (x′ ≥ x) and  
{(x x′ ) AND (f(x′) ≤ f(x))}, separately. They called the first condi-
tion as PO-mutation model, and the second condition as ZeroMax 
model, respectively. PO-mutation has a role of driving force for 
approaching the optimum solution. In contrast, ZeroMax model 
works as a resistance against the approaching to the optimum 
solution. ZeroMax model’s power is smaller than OneMax model 
because it has a condition (x x¢ ). The algorithm of PO-mutation 
is given by Algorithm 2.

Algorithm 2 | PO-mutation

1: Initialize x ∈ {0, 1}l uniformly at random.
2: Create x′ by flipping one each bit in x with probability pm.
3: Select if x′ ≥ x then x := x′.
4: Go to 2 until a termination condition is fulfilled.

In the comparison x and x′, (x′ > x) means that every bit changes 
were only from 0 to 1, (x′ < x) means that every bit changes were 
only from 1 to 0, and ( ¢x x ) means that both bit changes were 
mixed.

We assumed that {1}l is the optimum string in the step 3 Selection 
process of Algorithm 2. PO-mutation model is used to investigate 
PO-EA convergence properties, so this model cannot be used to 
the problems whose the optimum string is not known.

3.3.  Partial Order Evolutionary Algorithm

Jansen introduced the PO-EA model [3]. The algorithm of PO-EA 
is given by Algorithm 3.

Algorithm 3 | PO-EA

1: Initialize x ∈ {0, 1}l uniformly at random.
2: Create x′ by flipping one each bit in x with probability pm.
3: Select if (x′ ≥ x) OR {(x′ ¢x x x) AND (f(x′) ≤ f(x))} then x := x′.
4: Go to 2 until a termination condition is fulfilled.

The difference of three algorithms are Selection in the step 3.

4.  NUMERICAL EXPERIMENT

As an optimization function, we apply discrete linear function f(x)
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where x is a binary string of length l. We consider the maximiza-
tion problem of this function. The optimum solution is xopt = {1}l. If  
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. That is to say OneMax function. 

If s = 1, then ai = 2i, i.e. binary number.

Since many studies suggested that the mutation probability of  
pm = 1/l may be the best choice, we carried out our analysis using 
this value.

In this section, we compare the first hitting time of the numerical 
experiments of (1 + 1) EA, PO-mutation and PO-EA with s = 0.0, 
1.0 and 0.5. We used the mutation rate pm = 1/l. The length of the 
string is l = 100, and we performed 10,000 runs for each parameter 
set, and averaged over them.

Figure 1 shows the time dependence of the probability of the first 
hitting time of optimum solution in (1 + 1) EA, PO-mutation 
and PO-EA with s = 0.0. These lines are the results of numer-
ical calculation. The result is moving averaged with window 
size of 30. The red line is the result of PO-mutation calculation. 
The green line is the result of PO-EA calculation. In Figure 1, 
the waveforms of (1 + 1) EA and PO-mutation are similar, but 
PO-EA is behind the other. The mean of the first fitting times in 
(1 + 1) EA, PO-mutation and PO-EA are 1069, 1014 and 1976, 
respectively.
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Figure 2 shows the time dependence of the probability of the first 
hitting time of optimum solution in (1 + 1) EA, PO-mutation and 
PO-EA with s = 1.0. The red line is the result of PO-mutation 
calculation. The green line is the result of PO-EA calculation. In 
Figure 2, the peak of the first hitting time is delayed in order of 
PO-mutation, (1 + 1) EA and PO-EA. The mean of the first fitting 
times in (1 + 1) EA, PO-mutation and PO-EA are 1136, 1008 and 
1295, respectively.

Figure 3 shows the time dependence of the probability of the first 
hitting time of optimum solution in (1 + 1) EA, PO-mutation  

Figure 1 | The distribution of the first hitting time of optimum solution 
in (1 + 1) EA, PO-mutation and PO-EA with s = 0.0. The blue line is the 
result of (1 + 1) EA calculation. The red line is the result of PO-mutation 
calculation. The green line is the result of PO-EA calculation.

Figure 2 | The distribution of the first hitting time of optimum solution  
in (1 + 1) EA, PO-mutation and PO-EA with s = 1.0. The blue line is the 
result of (1 + 1) EA calculation. The red line is the result of PO-mutation 
calculation. The green line is the result of PO-EA calculation.

Figure 3 | The distribution of the first hitting time of optimum 
solution in (1 + 1) EA, PO-mutation and PO-EA with s = 0.5. The blue 
line is the result of (1 + 1) EA calculation. The red line is the result 
of PO-mutation calculation. The green line is the result of PO-EA 
calculation.

and PO-EA with s = 0.5. The red line is the result of PO-mutation 
calculation. The green line is the result of PO-EA calculation. 
In Figure 3, as in Figure 1, the waveforms of (1 + 1) EA and 
PO-mutation are similar. PO-EA is behind the other, but it is not 
as late as Figure 1. The mean of the first fitting times in (1 + 1) EA, 
PO-mutation and PO-EA are 1050, 1018 and 1280, respectively.

5.  SUMMARY

In this paper, we studied time behavior of (1 + 1) EA, PO-mutation 
and PO-EA to understand how evolutionary computation works 
for discrete linear functions. We demonstrate that the (1 + 1) EA 
can obtain an optimum solution at a stable hitting time for discrete 
linear functions. When the mutation rate is weak, on the order of 
1/l, most monotonic functions behave similarly and can be approx-
imated well by the PO-mutation model. These studies can help to 
understand the working mechanism of EA, and give some sugges-
tions to design algorithms for other problems.
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