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1.  INTRODUCTION

Legged robots can move on various terrain because they have legs 
and utilize their several degrees of freedom. They are controlled 
by planning their motion based on a strict model of a robot and 
an environment. However, planning their motion based on a strict 
model for various environments is quite complex, and inefficient to 
move various terrains at high speed.

To overcome this problem, Central Pattern Generators (CPGs) can be 
used. The mechanism of the CPG is related to rhythmical movements 
such as walking and swimming [1,2]. The CPG, an animal motion 
generation method, enables the motion of legged robots on various 
terrain using only one algorithm because of a pull-in phenomenon.

Because of the above advantages, CPGs have been used in robots in 
several studies. Kimura et al. implemented the CPG on a real robot. 
The robot “Patrush” can walk [3] and “Tekken4” can turn [4] on 
rough terrain. The turning motion is realized by controlling the 
hip yaw joint. However, the vibrations of the robot body are large 
because falling phenomenon in the roll direction occurred.

In the case of teleoperation of a legged robot, an operator controls 
a robot while watching the images from a camera mounted on the 
robot. Therefore, the image vibration should be small for the opera-
tor to understand the surroundings of the robot. In the experiment 
conducted by Kimura et al. [4], the robot experiences vibration in 

the roll direction. Figure 1a shows the graph of the posture of the 
main body (the roll and pitch direction) when turning on a flat 
ground [4]. According to the body roll angle (thick black line) in 
the graph, the robot vibrates, and it is finally overturned.

In the method proposed by Kimura et al., the camera image will 
vibrate so that teleoperation will be difficult. According to the study 
conducted by Tsubaki et al. [5], if the frequency of the image vibra-
tion is the same, a larger amplitude makes the operator uncom-
fortable. Therefore, in teleoperation, the image vibration should be 
small. Figure 2b illustrates a graph showing the relation between 
the subjective evaluation and the rotation angle for motion sickness 
[6]. Vibration in the roll direction is most likely to cause motion 
sickness at any speed of rotation.

The vibration of the robot body causes discomfort to the operator. 
There are many researches of robots installed CPG [7–9] without 
considering suppression of roll direction vibration. On the other 
hand, we found a research about suppression of quadruped robot 
body vibration [10]. However, the research did not consider of 
vibration during turning. Therefore, the purpose of this study is to 
suppress roll vibration in a legged robot during turning. To suppress 
roll vibration, we proposed a turning method using the asymmetric 
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A B S T R AC T
Quadruped robots experience excessive vibrations in the roll direction when turning by controlling their hip yaw joint. In the 
case of image-based teleoperation of the robot, the operator cannot aware the situation of the robot, due to excessive vibrations 
of the viewpoint of the image from the camera mounted on the robot. Especially, it is known that vibration in the roll direction 
is most likely to cause motion sickness. To overcome this problem, we proposed the asymmetric amplification of the output 
waveforms of central pattern generators. We implemented the proposed method on a robot in a dynamic simulator and verified 
the effectiveness of the proposed method, during the turning operation. As a result, we confirmed that the proposal method can 
suppress 43.7% vibration of the robot body in the roll direction and 7.4% vibration in the pitch direction compared with the 
conventional method.
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aAdapted from “Realization of dynamic turning motion on irregular terrain of a 
quadruped robot “TEKKEN4” with neural oscillators” by Fukuoka and Kimura [4], 
Copyright 2006 by The Japan Society of Mechanical Engineers. This image is remade for 
this paper.
bAdapted from “Visually induced motion sickness” by Ujike [6], Copyright 2007 by The 
Institute of Image Information and Television Engineers.
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Figure 1 | Tekken body angle in turning on flat land [4a].

Figure 2 | Subjective evaluation value of motion sickness with respect to 
speed of rotation when rotation relative to yaw, pitch, and roll axis is given 
in video [6b].

Figure 4 | A robot in simulator.

amplification of the CPG output waveform. In this study, we veri-
fied the effectiveness of the proposed method comparing with the 
previous method [4], that uses the yaw hip joint for turning, by 
carrying out an experiment using a dynamic simulator.

2.  WALKING ON FLAT GROUND USING CPG

2.1. � Nonlinear First-order Simultaneous  
Differential Equations Constituting CPG

The basic formula of the CPG is a nonlinear first-order simultane-
ous differential equation shown in Equations (1)–(3) [3].
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ui, vi, and yi are the value, fatigue state, and output of the i-th 
neuron, respectively, u0 is the steady input that generates oscilla-
tion, Feedi is the feedback such as the joint angle, b is the fatigue 

state factor, t  and t ′ are the time constants of ui and vi, respectively, 
and wij is the connection factor that determines the influence of the 
other neurons. A pair of CPGs was mounted on each joint, and four 
equations were formed corresponding to each leg. This method is 
based on the biped walking program [11] of the CPG where the 
connection factor is defined as follows:

w1 - Between the extensor and flexor of the same joint.
w2 - Between the right and left of the same extensor and flexor.
w3 - Between the knee and hip joints of the extensor.
w4 - Between the knee and hip joints of the flexor.
w5 - Others.

Figure 3 shows the proposed CPG configuration. We generated a 
waveform for walking by multiplying the different amplification 
gain by the output value of the CPGs of each joint. The walking 
waveform is given by Equation (4).

		      q joint joint E FK y y= -( ) � (4)

qjoint is the target angle of the joint, Kjoint is the amplification gain at 
the joint, yE and yF are the CPG output values of the extensor and 
flexor, respectively.

2.2.  Robot for Experiment

A robot, which is used in the experiment, is shown in Figure 4. 
We developed the robot using an open-source dynamic simulator, 
named “Gazebo”. The CPG parameters are listed in Table 1.

Figure 3 | Proposed CPG configuration.
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Table 1 | CPG parameters 

Parameter Value Parameter Value

u0 3.0 w1 −2.0
b 2.5 w2 −1.0
t 0.10 w3 −0.50
t ′ 0.080 w4 −0.30

w5 0

Table 2 | Amplification factor 

Joint name
Gain (straight) Gain (turning)

Right Left Right Left

Hip 2.2 2.2 4.2 1.2
Knee 0.8 0.8 1.8 0.8

Figure 6 | Robot body pitch angle.

Figure 5 | Robot body roll angle.

3.  TURNING MOVEMENT

3.1. � Turning Method with Yaw Joint  
(Conventional Method)

In the conventional method, the degree of freedom in the yaw direc-
tion is added to the hip joint. The turning radius can be changed by 
the angle of the yaw axis of the leg. However, in this method, the left 
front leg protrudes outside the robot. This increases the moment 
around the falling axis. We assumed that large vibrations would 
occur because of the increase in the moment.

3.2. � Turning Method without Yaw Joint 
(Proposed Method)

To reduce the moment around the falling axis, we suggest a change 
in the amplification factor of the CPG output between the left and 
right legs. The robot is able to turn when the amplification factor of 
the joint angle on the outside of the turning circle is increased. The 
turning radius can be changed by changing the amplification factor. 
Table 2 lists the amplification factors at straight and turning, which 
is used in the experiment.

4.  VERIFICATION EXPERIMENT

4.1.  Verification Condition

To verify the proposed method, we used the Gazebo simulator as 
described in Section 2. We made the robot, which can walk on a flat 
ground using the simulator, installed two methods of turning, and 
evaluated their performances in the following sequence: adjusting 
the steady input to have the same speed and turning radius, mea-
suring the roll angle of the robot body when the robot walks on the 
turning trajectory, and comparing the data. The following conditions 
were applied so that the robot can walk on the same turning radius.

•• Conventional method:
	 Rotation angle of front leg - 0.15 [rad].
	 Stationary input - 2.7.

•• Proposed method:
	 The amplification factor of the joint angle - The “gain (turning)” 

column of Table 2.
	 Stationary input - 3.0.

4.2.  Results and Discussion

Figures 5 and 6 show the graph of the robot posture when turning 
in orbit shown as Figure 7. The peak-to-peak value of the roll angle 
in the conventional method is −0.2 to 0.15 [rad] and that in the 
proposed method is −0.1 to 0.1 [rad].

In this study, we compared the conventional and proposed meth-
ods. As shown in Figure 5, the vibration in the roll direction could 
be suppressed. By comparing the maximum peak-to-peak value 
of both methods, we observed that the proposed method is able 
to suppress 43.7% vibration in the roll direction. Moreover, the 
proposed method suppressed 7.4% vibration in the pitch direction  
compared with the conventional method. We consider that the 
reason is the suppression of vibration around the falling axis. 
Moreover, motion sickness can be reduced because the vibration in 
the roll direction can be suppressed.
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Figure 7 | Orbit of robot turning.
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5.  CONCLUSIONS AND FUTURE WORK

The purpose of this study is to suppress roll vibration in the 
turning motion of a legged robot. We suggest a turning method 
that changes the amplification factor of the joint angle between 
the left and right legs to suppress the robot body vibration. 
We verified the effectiveness of the proposed method using a 
dynamic simulator compared with the conventional method. 
As a result, we observed that the proposed method can sup-
press 43.7% vibration in the roll direction and 7.4% in the pitch 
direction. The proposed method will reduce the motion sick-
ness caused by the image vibration during teleoperation. In the 
future, we will realize walking of legged robots on rough terrain 
by installing CPG feedback.
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