
Research Article

Mean-square Quasi-composite Rotating Formation Control  
of Second-order Multi-agent Systems under Stochastic  
Communication Noises

Lipo Mo1, Xiaolin Yuan1, Yingmin Jia2,*, Shaoyan Guo3

1School of Science, Beijing Technology and Business University, Beijing 100048, China
2The Seventh Research Division and the Center for Information and Control, School of Automation Science and  
Electrical Engineering, Beihang University (BUAA), 37 Xueyuan Road, Haidian District, Beijing 100191, China
3Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou 510641, China

1.  INTRODUCTION

Over the past few decades, distributed coordination control of 
Multi-Agent Systems (MASs) is a research focus and attracts lots 
of attentions from many fields. Among them, consensus problem 
is a fundamental problem, aiming at this problem, numerous of 
good results have been reported. A theoretical framework for anal-
ysis of consensus for MASs was built in Olfati-Saber et al. [1], and 
had great influence. Besides, others of excellent results have been 
reported, such as asynchronous consensus [2], leader following 
consensus [3], finite-time consensus [4] and so on [5,6].

It is common to find that there always exist lots of collective motions 
in nature and reality engineering, such as the distributed formation 
flight of satellites around the moon while the moon moving around 
the earth, flocks of birds flying around a closed circle and so on. 
Recently, to imitate or explain such kinds of motions, the collective 
rotating motions of second-order MASs was investigated in Lin and 
Jia [7], based on which, Lin et al. [8], made a further study on the 
distributed composite-rotating consensus of second-order MASs. 
Furthermore, rotating consensus [9], common finite-time rotating 
encirclement control [10], and the influence of non-uniform delays 
on distributed rotating consensus [11] was investigated. Moreover, 
notice the fact that, groups of agents may require to maintain 
desired formation during this process, therefore, the formation 
control of MASs was investigated, such as Xiao et al. [12], Xue et al. 
[13], and Meng et al. [14].

Notice that the above-mentioned works all assumed that the infor-
mation exchange between different agents is ideal, that is, each 
agent can obtain its neighbor’s information accurately. However, 
in reality, the communications among different agents may be 
interfered by stochastic communication noise, which may lead to 
great negative influence on the stability of the system. It is mean-
ingful to design proper control protocol such that the stochastic 
communication noises can be countered. The consensus control 
problem of MASs with communication noises were solved in Li 
and Zhang [15], Cheng et al. [16], Guo et al. [17], and Sun et al. 
[18]. The mean-square composite-rotating consensus problem of 
second-order MASs with communication noises was addressed 
by introducing a time-varying consensus gain in the control pro-
tocol [19]. Since the formation is considered and a time-varying 
consensus gain is introduced into the control protocol to attenuate 
the stochastic communication noises, though the origin closed-
loop system is changed into an equivalent closed-loop system by 
taking a coordinate transformation, it is still difficult to obtain the 
eigenvector of the matrix. Therefore, the methods proposed in Li 
and Zhang [15], Cheng et al. [16], Guo et al. [17], Sun et al. [18], 
and Mo et al. [19] cannot be directly extended to achieve the quasi-
composite rotating formation control of MASs under stochastic 
communication noises. Up-to-date, it is a pity to find that there is 
no result on composite-rotating formation control of MASs with 
stochastic communication noises.

Motivated by the above discussions, the mean-square quasi-
composite rotating formation control of second-order MASs 
with stochastic communication noises is considered in this paper 
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where i = 1, 2, ...,  n, ri(t) ∈ ℂ, �vi(t) ∈ ℂ, ui(t) ∈ ℂ respectively denotes 
the position, velocity and control input of the ith agent.

In this paper, our objective is to design a distributed control proto-
col by local information to assure that the effect of stochastic com-
munication noises can be counteracted, and all agents surround 
a moving point with a desired structure and a constant angular 
velocity w1 > 0 while the moving point surrounds the origin with a 
constant angular velocity w2 > 0.

4.  MAIN RESULTS

In this section, the mean-square quasi-composite rotating forma-
tion control of MASs (1) and (2) is investigated.
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denotes the relative velocity and the center of the rotation of the ith 
agent respectively.

Suppose that the information exchange among the agents is 
affected by the stochastic communication noises. The informa-
tion of the ith agent received from its neighbor agents is defined 
as follows:
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where k ∈ Ni, {hrik, h�vik}, i, k = 1, 2, ...,  n are independent standard 
white noises, {srik, s�vik} are the finite noise intensities.

Remark 1. When there exist no communication noises, i.e., hrik = 0  
and h�vik = 0, the problem considered herein degenerate into the quasi-
composite rotating formation problem which was considered in Mo 
et al. [20]. Furthermore, when w2 = 0, it degenerates into the quasi-
rotating formation problem which was investigated in Lin and Jia [7]. 
When w2 = 0 and have no formation requirements for the agents, 
the problem considered herein degenerate into the mean-square con-
sensus problem which was investigated [8]. Generally speaking, the 
problem considered in Lin and Jia [7], Guo et al. [17], and Mo et al. 
[20] all can be seen as a special case of this paper.

The definition of the mean-square quasi-composite rotating for-
mation is given as follows:

Definition 1. Let h = (h1, h2, ..., hn)
T = (r1e

jq1, r2e
jq2, ..., rne

jqn)T ∈ ℂn 
denotes the desired formation, where ri > 0, qi ∈[0, 2p), i = 1, 2, 
..., n. The MASs (1) and (2) are said to achieve mean-square quasi-
composite rotating formation if for each i, k = 1, 2, ..., n.
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as a response to the lack of corresponding researches, by using 
which the actual physical system can be described more precisely.  
The main contributions of this paper can be summarized as follows: 
(i) In contrast with Mo et al. [20], where the quasi-composite rotat-
ing formation control of MASs was solved without communication 
noises, the results of this paper are more realistic. (ii) The definition 
of the mean square quasi-composite rotating formation of MASs 
is first proposed. (iii) A novel distributed control protocol with 
a time-varying control gain is designed, by using which the sto-
chastic communication noises can be attenuated. (iv) By using the 
theory of stochastic differential equation and proper coordination 
transformation, it is proved that under some mild conditions, the 
desired formation can be achieved.

The rest of this paper is organized as follows. In Section 2, the theo-
ries of algebraic graph are introduced. Section 3 describes the system 
models and the problem under investigation. In Section 4, the defi-
nition of mean-square quasi-composite rotating formation is given, 
besides a novel distributed control protocol and sufficient conditions 
are deduced for achieving mean-square quasi-composite rotating  
formation of MASs. A numerical simulation is given in Section 5  
to verify the effectiveness of theoretical results we proposed. 
Finally, a conclusion is made for this paper in Section 6. Notations: 
Throughout this paper, let ℝ and ℂ denote the sets of real numbers 
and complex numbers; Let In ∈ ℝn×n (On ∈ ℝn×n) be the n × n identity 
(zero) matrix, 1n ∈ ℝn denote the n × 1 column vector of all ones; Let 
diag{s1, s2, ..., sn} ∈ ℝn×n denotes the diagonal matrix with diagonal 
entries s1, s2, ..., sn; j represents the imaginary unit; A* represents the 
conjugate transpose of matrix A; For complex vector x ∈ ℂn, ||x||2 = 
x*x; tr(P) represents the trace of P; (·)T denotes the transpose of a real 
matrix; (·)−1 denotes the inverse of a invertible matrix; lmax(·) denotes 
the maximum eigenvalue of a real symmetric matrix.

2.  PRELIMINARIES

Theories of algebraic graph [21]. Let (V, e, A) be an undirected 
graph with n nodes, V = {1, 2, ..., n} represents the set of nodes, 
and e ⊆ V × V represents the set of edges, A = [aij] represent the 
weighted adjacency matrix. Let Ni = {j ∈ V: (j, i) ∈ e} denotes the 
neighbors set of node i, ℒ = [lij] denotes the Laplacian of graph G. 
Graph G is said to be connected if there exists a path between every 
two distinct nodes.

Lemma 1. Ren and Beard [22]. If G is a connected undirected graph, 
then the Laplacian ℒ of G has a simple zero eigenvalue, and 1n is the 
corresponding eigenvector. Additionally,

0 1 2= £ £ £l l l( ) ( ) ( ).  � n

Lemma 2. Ren and Beard [22]. If G is a connected undirected graph, 
there exists an orthogonal matrix U such that UT ℒU = diag{0, 
l2, ..., ln}, and the last column of U is 1n n/ .

3.  MODEL AND PROBLEM STATEMENT

Consider a multi-agent system with n agents, the dynamics of each 
agent are given as follows [Equations (1) and (2)]:

			    � �r t v ti i( ) ( ),= � (1)
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and lim
t iVar r t
→+∞

< ∞[ ]( ) , lim
t iVar v t
→+∞

< ∞[ ]( ) , for given w1 > 0 and  
w2 > 0.

Remark 2. Here we make more explanations for the Definition 1. 
Equation (4) means that the rotating centers of all agents reach con-
sensus eventually in mean square. Equation (5) means that all agents 
achieve quasi formation h eventually in mean square. Equations (6) 
and (7) respectively means that all agents and all rotating centers 
were guaranteed to move in a circle with angular velocity w1 and w2 
eventually in mean square. Therefore, when conditions (4)–(7) are 
all satisfied, as time tends to infinity, all agents are guaranteed to 
surround a moving point with a desired formation h and a constant 
angular velocity w1 > 0 while all moving rotating centers are guaran-
teed to surround the origin with a constant angular velocity w2 > 0 
in mean square.

In this paper, the following distributed control protocol is  
proposed:
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where a(t) > 0 is a time-varying consensus control gain.

To continue, we need the following assumptions.

Assumption 1. The communication topology graph G is connected.

Assumption 2. 
i

n

i
je i

=
∑ ≠

1

0r q  when |qi – qk| = 0 or |qi – qk| = p, i, k = 

1, 2, ..., n.

Assumption 3. Li and Zhang [15]. Convergence condition: 

0

¥

ò = ¥a s ds( ) .

Assumption 4. Li and Zhang [15]. Robust condition: 
0

2
¥

ò < ¥a s ds( ) .

Remark 3. For the purpose of suppressing the stochastic communi-
cation noises, the time-varying control gain a(t) is introduced into 
the control protocol, i.e., making it more robust to the stochastic 
communication noises. All agents are assured to achieve quasi-com-
posite rotating formation motion with a not too fast rate by taking 
Assumption 3, and the stochastic communication noises are against 
by the control protocol by taking the Assumption 4.
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we have [Equation (9)]
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Furthermore, together (1) we have [Equation (10)]
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which implicates that
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Let d(t) = (v1(t), c1(t), ...,vn(t), cn(t))T, then the closed-loop system 
(9) and (10) can be rewritten as
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Ω = diag{Ω1, ..., Ωn} ∈ ℂ2n×2n2, 
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Lemma 3. Suppose that Assumptions 1 and 2 are fulfilled. For a 
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Equation (16) lead to
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then (15) plus (17), we arrive at FH1n = 0, which is a contradiction.

Similarly, Φ does not have two generalized eigenvectors associated 
with b2 . Hence, zero is the eigenvalue of Φ with algebraic multi-
plicity two.

Next, let us prove that other eigenvalues of Φ have negative real part. 
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Lemma 4. Under Assumptions 1–4, � Ä + ÄB a t B1 2( )  has zero 
eigenvalue with algebraic multiplicity 2, and all other eigenvalues 
have negative real part.

Proof. Since � Ä + ÄB a t B1 2( )  is similar to Φ, from Lemma 3, 
the conclusion is obvious.

Theorem 1. Suppose that Assumptions 1–4 are fulfilled. The desired 
mean-square quasi-composite rotating formation control of MASs (1) 
and (2) can be achieved by taking the control protocol (8).

Proof. Let b1
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where Λ ∈ ℂ(2n–2)×(2n–2) is a Jordan matrix. From Lemma 4, all eigen-
values of Λ have negative real parts.
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where Ā = jA.

Then, the origin system can be decoupled into the following system:

		   �z w z g h1 1 1 1( ) ( ) ( ) ,t j t a t= + W � (29)

		    �z w z g h2 2 2 2( ) ( ) ( ) ,t j t a t= - + W � (30)
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	  �z z h( ) ( ) ( ) ( ) ( ) .t jV I A U a t t Va tn= Ä +éë ùû +L W � (31)

In view of the theory of stochastic differential equation, the solu-
tion of (29)–(31) is
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where W(t) = (Wr11(t), W�v11(t),...,Wr1n(t), W�v1n(t),...,Wrn1(t),  
W�vn1(t), ..., Wrnn(t), W�vnn(t))T and Wrik(t), W�vik(t), i, k = 1, 2, ..., n are 
standard Brownian motions. Therefore, we have
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Since all eigenvalues of Λ have negative real parts, this together Lemma 3  

with Assumptions 3, we have lim
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Together d (t) = Uz(t) with (32) and (33), we have
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Let v(t) = (v1(t), v2(t),...,vn(t))
T, c(t) = (c1(t), c2(t),...,cn(t))

T, we can obtain  
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which indicates that conditions (4)–(7) are satisfied, i.e., the desired 
formation control of MASs (1) and (2) is achieved.

Remark 4. Different from Li and Zhang [15], Cheng et al. [16], 
Guo et al. [17], Sun et al. [18], and Mo et al. [19], where the mean 
square consensus control of MASs was investigated, the mean-square 
quasicomposite rotating formation control of MASs is investigated 
in this paper. Since the formation is considered and a time-varying 
consensus gain is introduced into the control protocol to attenuate 
the stochastic communication noises, though the origin closed-loop 
system is changed into an equivalent closed-loop system by taking a 
coordinate transformation, it is still difficult to obtain the eigenvector 
of the matrix. Therefore, the methods proposed in Li and Zhang [15], 
Cheng et al. [16], Guo et al. [17], Sun et al. [18], and Mo et al. [19] 
cannot be directly extended to solve the problem proposed herein.

5.  A NUMERICAL EXAMPLE

To demonstrate the effectiveness of the proposed theoretical 
results, consider MASs with six nodes. The communication topol-
ogy graph of the MASs is shown in Figure 1, from which we could 
see that the communication topology graph is connected such that 
the Assumption 1 is satisfied. Without loss of generality, we assume 
that the weight of each edge is 1. Then consider the MASs (1) and 
(2), where the control input in (2) is chosen as the distributed con-
trol protocol (8). The initial conditions of the system are taken as

r1(0) = −2.8 − 4.8j, r2(0) = 1.7 + 4.2j, r3(0) = −1.1 + 6.2j, r4(0) = 3 
+ 5j, r5(0) = −1 + 6j, r6(0) = 3 + 5.3j, �v1(0) = 2.1, �v2(0) = 2.8, �v3(0) 

= −0.9, �v4(0) = −2, �v5(0) = −1, �v6(0) = −2.2. Take a t
t

( ) =
+
2

1
, w1 = 

0.8, w2 = 0.02, q
p

i
i=

6
, i = 1, 2, ..., 6 and choose r1 = 2, r2 = 0.5,  

r3 = 1.5, r4 = 2.5, r5 = 1, r6 = 2.5.
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Figure 1 | The communication topology graph.

Figure 2 | Position trajectories of the MASs.

Figure 3 | Trajectories of the moving rotating centers.

Figure 4 | Whole trajectories of the position and moving rotating centers 
of the MASs.

Figure 5 | Local trajectories of the position and moving rotating centers of 
the MASs.

Figure 6 | Trajectories of the control inputs of the MASs (the real part).

Figure 2 shows the position trajectories of the MASs, from 
which we could see that all agents finally surround a common 
moving point with a desired formation. Figure 3 shows the tra-
jectories of the moving rotating centers, from which we could 
see that the moving points finally surround the origin with a 
constant angular velocity. We could see the whole (Figure 4) and 
local (Figure 5) trajectories of the position and moving rotating 
centers of the MASs for more intuitive, which implicates that 

Theorem 1 is effective. Besides, it is clear from Figures 6 and 7 that 
the control input value of each agent tends to a bounded value 
as time tends to infinity.
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6.  CONCLUSION

The mean-square quasi-composite rotating formation problem of 
second-order MASs with stochastic communication noises was 
investigated in this paper. A novel distributed control protocol with 
a time-varying control gain was designed. And then, corresponding 
sufficient conditions were deduced. Besides, the effectiveness of the 
proposed theoretical results was confirmed via a numerical example.
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