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1.  INTRODUCTION

In a logistic process, human workers loads cargo boxes onto a pallet 
and to unload them from a pallet where such tasks are often called 
the palletizing and de-palletizing tasks, respectively (Figure 1). 
Since the palletizing tasks are known to be very labor intensive, this 
research proposes a robotic motion planning method for automat-
ing such tasks.

When a robot loads a lot of cargo boxes onto a pallet, a robot performs 
the pick-and-place for a number of times with slightly changing the 
initial and target configurations of the robot (Figure 2). Let us con-
sider planning the motion of a robot performing the palletizing task 
by using a conventional sampling based motion planning method 
such as the Probabilistic Roadmap Method (PRM) and Rapidly-
exploring Random Tree (RRT). Although the configurations of the 
robot and the environment around it are similar for each pick-and-
place, a motion planner usually constructs a number of roadmaps 
and the constructed roadmaps are not used in the next pick-and-
place. This results in unnecessarily increasing the calculation time 
needed for motion planning. Moreover, the calculation time of the 
random-sampling based motion planners such as PRM and RRT 
changes depending on each pick-and-place. It means that the calcu-
lation time may sometimes become extremely large if the roadmaps 
are placed at the wrong places in the initial planning phase.

To cope with this problem, this paper proposes an approach for 
robotic motion planning methods suitable for the palletizing tasks 

by re-using the roadmaps constructed in the previous pick-and-
place. We propose two planning methods where one is named the 
Re-usable PRM (R-PRM) and the other is the Re-usable RRT Star 
(R-RRT*). In both methods, we consider reducing the calculation 
time by re-using the previously constructed roadmaps. In R-PRM, 
we construct a graph of roadmap in the first pick-and-place. After 
the second pick-and-place, we just modify the roadmaps located 
around the initial and the target object pose. In the R-RRT*, we 
execute the RRT* in the first pick-and-place. After the second pick-
and-place, we use the solution path obtained in the first pick-and-
place. We confirm that both methods enable us to significantly 
reduce the calculation time after the second pick-and-place.

The rest of the paper is organized as follows: after explaining the 
related works in Section 2, we explain the proposed methods in 
Section 3. In Section 4, we confirm the effectiveness of our approach 
through experiments by using an industrial robot.

2.  RELATED WORKS

In robotic motion planning, random-sampling based methods 
such as the PRM and RRT have been widely used [1–4]. To plan a 
smooth path, post processors such as Geraerts and Overmars [5], 
Hauser and Ng-Thow-Hing [6] and the motion planning methods 
considering the asymptotic optimality such as the RRT* [4] have 
been proposed.

While the conventional PRM and RRT assume the static obstacles, 
some methods on motion planner can be used under dynamically 
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A B S T R AC T
This paper focuses on robotic motion planning for performing the palletizing or de-palletizing tasks. In such tasks, a robot 
usually iterates similar pick-and-place for several times. Considering such feature of the tasks, we propose two motion planning 
approaches named reusable Probabilistic Roadmap Method (PRM) and reusable Rapidly-exploring Random Tree Star (RRT*) 
where both methods utilize the previously constructed roadmaps in the conventional PRM and RRT*, respectively. We 
experimentally confirm that both methods significantly save the calculation time needed for motion planning compared to the 
conventional planning methods.
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Figure 1 | Image of palletizing and de-palletizing tasks.

Figure 2 | In a robotic palletizing task, a robot iterates similar pick-and-
place for a number of times. 

Figure 3 | Collision checking of roadmaps included in the hyper sphere.

changing environments. We can roughly divide the researches 
into two groups. In the first group, the roadmap graph is modi-
fied according to the change of environments [7–12]. Ferguson and 
Stent [10] proposed the anytime-RRT where they update an invalid 
part of the tree structure according to the change of environment. 
Anytime-RRT has been also used for the path planning of mobile 
robots [11,12]. On the other hand, the second group, the solution 
path is locally modified according to the change of environment 
[13,14]. Quinlan and Khatib [13] proposed a method for modi-
fying the solution path according to the gradient of energy field. 
Combining the above two approaches, Yoshida et al. [15] proposed 
a method of humanoid motion planning that can deal with the 
change of environments.

On the other hand, this paper proposes a method of robotic motion 
planning for changing environments. Different from the pre-
vious approach, we consider utilizing a feature of the palletizing 
tasks where the environment only the position of the target object 
changes for each pick-and-place. Assuming such small change of 
environment, we consider modifying the roadmap graph.

3.  PROPOSED MOTION PLANNERS

In this research, we propose two methods on robotic motion plan-
ning re-using the previously constructed roadmaps, i.e., R-PRM 
and R-RRT*. First, we explain a method for collision checking 
introduced in this research in Subsection 3.1. Then, we explain the 
R-PRM and R-RRT* in Subsections 3.2 and 3.3, respectively.

3.1.  Collision Detection

We tackle the motion planning problem of a robot moving in a 
dynamically changing environment. As an example of a dynamically 

changing environment, we consider a situation where a robot 
performs the pick-and-place for a number of times. In each pick-
and-place, a robot picks an object from the stack and put it at a 
designated place. After a robot performs a pick-and-place, the con-
figuration around the robot changes only due to the moved object. 
Since the change of configuration is not large, it is not efficient to 
construct the roadmap graph from scratch for each pick-and-place. 
Rather, taking into account the configuration of moved object, we 
consider slightly modifying the previously constructed roadmaps. 
This subsection explains how to check collision around the part of 
the configuration space where the change occurred.

Figure 3 shows how to check collision and to modify the pre-
viously constructed roadmap graph where the newly appeared 
obstacle in the configuration space is marked in gray. Since it is 
almost impossible to precisely obtain the shape of newly appeared 
obstacle in the configuration space, we first assume a hyper sphere 
in the configuration space as shown by the green circle. We set 
the radius of the hyper sphere large enough to include the newly 
appeared obstacle. We consider checking the collision of the road-
maps constructed in the previous pick-and-place included in this 
hyper sphere. If the collision is detected, we consider removing 
the corresponding roadmaps and edges connecting these road-
maps from the roadmap graph.

3.2. � Re-usable Probabilistic  
Roadmap Method

We first explain the R-PRM for reusing the previously constructed 
roadmap graph. The overview of the algorithm is shown in Figure 4 
where white and gray denote the free space and obstacle, respec-
tively. Red and blue lines denote the previously found path and the 
path to be planned, respectively.

	(i)	 Planning Initial Path

		  To plan the motion of a robot in the first pick-and-place, we 
use conventional PRM and memorize the constructed road-
map graph as shown in Figure 4a. The box placed at the 
designated place is regarded as the newly appeared obstacle 
when planning the next pick-and-place. By using the collision 
checking method explained in the previous subsection, we 
consider removing the inefficient edges and nodes included in 
the roadmap graph as shown in Figure 4b.

	(ii)	 Planning Second and Subsequent Pick-and-place

		  To plan the motion of a robot in the second and subsequent 
pick-and-place, we consider re-using the previously con-
structed roadmap graph for the purpose of shortening the 
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Figure 4 | Path planning using R-PRM.

calculation time. Connecting the new start and goal configu-
rations to the roadmap graph, the solution path is searched as 
shown in Figure 4c.

	(iii)	 Path Smoothing

		  After finding the solution path, we apply the shortcut opera-
tion [6] for predefined times to smooth the solution path as 
shown in Figure 4d.

3.3. � Re-usable Rapidly-exploring  
Random Tree Star

We next explain a single-query motion planner that re-uses the 
previously constructed roadmaps based on the RRT* with satisfy-
ing the asymptotic optimality.

	(i)	 Planning Initial Path

		  To plan the motion of a robot in the first pick-and-place, 
we use the conventional RRT* as shown in Figure 5a. The 
roadmap tree is constructed from both initial and goal con-
figurations. After finding the solution path, we remove the 
initial and the target configurations from the solution path.  

Figure 5 | Path planning using R-RRT*.

Let Tmid be the obtained path. When planning the next pick-
and-place, the object placed in the previous pick-and-place 
is regarded to be an obstacle. We remove the roadmaps caus-
ing collision from Tmid due to the newly appeared obstacle as 
shown in Figure 5b.

	(ii)	 Planning Second and Subsequent Pick-and-place

		  After the second and subsequent pick-and-place, we first con-
nect Tmid with the new initial configuration, and then connect 
Tmid with the new target configuration. Let Ts and Tg be the road-
map trees rooted at the initial and the target, respectively. First, 
by expanding both Ts and Tmid, we try to connect Ts and Tmid by 
using the RRT* as shown in Figure 5c. Then, by expanding both 
Tg and Tmid by using the RRT* as shown in Figure 5d.

While we can guarantee the asymptotic optimality of the solution 
path by using the conventional RRT*, our proposed R-RRT* can 
approximately realize the optimal path if the new initial and target 
configurations are close enough to the previous initial and target 
configurations, respectively.
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Figure 6 | Overview of EX1.

Figure 7 | Overview of EX2.

Figure 8 | Overview of EX3.

4.  EXPERIMENTS

This section shows experimental results of our proposed methods.

4.1  Experimental Conditions

We performed the following three palletizing experiments.

•• EX1 Arrange the picked objects from the back to the front as 
shown in Figure 6.

•• EX2 Arrange the picked objects from the front to the back as 
shown in Figure 7.

•• EX3 Place objects placed in a cage on the table under the table as 
shown in Figure 8.

Snapshot of robot motion in EX2 is shown in Figure 9.

In each experiment, we tested PRM, R-PRM, RRT*, and R-RRT*. In 
case of R-PRM and R-RRT*, we planned the first pick-and-place by 
using RRM and R-RRT* and planned the second and subsequence 
pick-and-place by using R-PRM and R-RRT*, respectively. In each 
experiment, we conducted experiments on placing six objects for 

Figure 9 | Snapshot of robot motion in EX2.

five times. We especially show the result of motion planning from 
the grasping configuration (Figure 9d) to the placing configuration 
(Figure 9h). We used the uniform sampling in EX1 and EX2 while 
we used the Gaussian sampling in EX3 since a large number of 
obstacles are included. When planning the motion by using PRM 
and R-PRM, we sampled the configuration space until we obtain 
50 milestones. We smooth the solution path by applying the short-
cut operation [6]. When planning the motion by using RRT* and 
R-RRT*, we terminated the planning algorithm if 10 feasible paths 
are planned or the path is updated for 100,000 times in EX1 and 
EX2 and for 300,000 times in EX3.

We used the industrial robot Nextage [16] equipped with a suction 
gripper in the right hand. To pick a box, the suction pad is placed 
at the upper surface of a box. We coded the planning algorithms on 
the robot simulation environment Choreonoid [17] and sent the 
motion command from Choreonoid to Nextage. To plan the robot 
motion, we used the PC with eight 3.10 GHz CPUs.

4.2.  Results

Figures 10 and 11 show the comparison of calculation time between 
PRM and R-PRM and between RRT* and R-RRT*, respectively. 
In each figure, a–c show the result of EX1, EX2 and EX3, respec-
tively. The vertical and the horizontal axes show the calculation 
time and the number of pick-and-place trial, respectively. We can 
see from these figures that the calculation time after second and 
subsequent pick-and-place has been improved in case of R-PRM 
and R-RRT* where the calculation time is <400 (ms) for all the 
experiments. Variation of the calculation time appeared in PRM 
and RRT* is reduced in R-PRM and R-RRT*. In EX1 and EX2, 
all the algorithms did not fail in finding a solution. On the other 
hand, in EX3, PRM failed in finding a solution for nine times out 
of 30 times pick-and-place while R-PRM never failed in finding a 
solution. This is because R-PRM and R-RRT* re-uses the previous 
roadmaps and likely to successfully find a solution.
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Figure 10 | Results of PRM and R-PRM*. (a) EX1, (b) EX2, (c) EX3.

Figure 11 | Results of RRT* and R-RRT*. (a) EX1, (b) EX2, (c) EX3.

5.  CONCLUSION

In this paper, we proposed a robotic motion planning algorithms 
re-using the previously constructed roadmaps which is well applied 
for robotic palletizing tasks. We proposed two motion planning 
algorithms, i.e., R-PRM and R-RRT* based on PRM and RRT*, 
respectively. Through experiments, we confirmed that we can 
significantly reduce the calculation time and can reduce the vari-
ation of the calculation time if we use our proposed algorithms. 
Application of our motion planning algorithms to other tasks is 
considered to be our future research topic.
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