
Journal of Robotics, Networking and Artificial Life 
Vol. 7(1); June (2020), pp. 41–47

DOI: https://doi.org/10.2991/jrnal.k.200512.009; ISSN 2405-9021; eISSN 2352-6386 
https://www.atlantis-press.com/journals/jrnal

Research Article

Verification of a Combination of Gestures Accurately  
Recognized by Myo using Learning Curves

Kengo Kitakura, Hideyuki Tanaka*

Graduate School of Education, Hiroshima University, Kagamiyama 1-1-1, Higashi-hiroshima, Hiroshima 739-8524, Japan

1.  INTRODUCTION

A technique for hand gestures recognition from surface 
ElectroMyoGraphy (sEMG) is useful for extending means of human 
communication. To find the rule of sEMG that corresponds to the 
state of hand gestures, machine learning is often used (e.g. Savur and 
Sahin [1] and Galea and Smeaton [2]). Recently, the Myo armband 
[3] is one of the most popular sEMG acquisition systems, because 
it is relatively inexpensive and easy to remove. The Myo armband is 
being regarded as one of the tools for operating virtual reality (VR) 
[4] and for communicating with hearing impairment [1], and so on.

In developing various applications of Myo as an input device, it 
is important to verify a combination of gestures learned from the 
Myo data, because we cannot develop a reliable application without 
finding a combination of gestures accurately classified. To find such 
a combination, we need to confirm that the number of the data 
used for learning is sufficient, but we cannot from a single matrix 
of classification accuracy.

There is a method for confirming that the number of the data used 
for learning is sufficient; that is using a learning curve [5]. The 
meaning of the learning curve in the context of machine learning 
is mainly divided into two [6]. One is a graph that is created by 
plotting performance measure against the training iteration on the 
condition that the number of training data is fixed. The other is a 
graph that is created by plotting performance measure against the 
number of the data used for training. In this study, we mean the 
learning curve by the second graph; it is created by plotting classi-
fication accuracy of training or test against the number of data for 
training.

In several studies, the learning curve has been used for predict-
ing the data required for DNA classification [7] and for comparing 
the methods of machine learning algorithms [8], and so on. These 
studies have used the averaged learning curve, which is an average 
of the discrimination accuracy of all classes. In contrast, Wahba  
et al. [9] proposed to use the learning curve for individual classes.

Learning curves are useful for verifying a combination of gestures 
accurately classified, because they possibly offer information on the 
boundary and data distributions. Learning curves indeed indicate 
accuracy of a classifier, and accuracy depends on the boundary and 
data distributions. However, the relationship between learning curves 
and data distributions has not been clear. If the relationship is clarified, 
it would be useful for inferring them in a high dimensional space.

There are a lot of studies on gesture recognition using the Myo 
armband [1,2,10]. But research has not been done for finding a 
combination of gestures accurately classified in the light of learning 
curves.

In this paper, we study relations between learning curves and data 
distribution. We then verify a combination of gestures accurately 
classified using a Myo armband.

2.  MYO ARMBAND AND GESTURES

Myo (Figure 1) is an armband type gesture controller developed 
by Thalmic Labs. It measures sEMG of the arm (Figure 2). Myo 
has sEMG sensors of eight channels and its sampling frequency is  
200 Hz. The sEMG measured by each channel is converted from 
analog to digital and is sent to the PC as an integer value between 
−128 and 128 by Bluetooth. The signal indicates the amount of 
active muscle fibers and is a dimensionless value.
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Let us represent the sEMG by vl(t), where l is the number of channel 
(l = 1, …, 8) and t is the time index (t = 1, …, Nv). We use the aver-
age of the absolute value wl(t) for each channel in 1 s as features for 
classification and define as follows:

		  w j v j tl
t

l( ) ( )( ) ,= - +
=
å1

200
200 1

1

200

�  (1)

where j = 1, …, Nw and l = 1, …, 8. It should be noted that the features 
(1) were used by Donovan et al. [11] as the mean absolute value (MAV).

American Sign Language (ASL) is a sign language mainly used in 
North America. It is published by National Institute on Deafness 
and Other Communication Disorders [12] and shown in Figure 3.  

Figure 3 | American sign language [12].

Figure 1 | Myo armband it has eight channels.

Figure 2 | Wearing Myo armband.

We deal with the sEMG data of 24 gestures except “j” and “z” in 
ASL, because we classify the hand gestures by using only the sEMG 
data and the gestures of “j” and “z” include motion of fingers. To 
conduct experiments, we make training and test dataset. The size 
of each dataset is 24 × 100. We use K-nearest neighbor of the scikit-
learn toolkit for classification.

3. � LEARNING CURVE AND  
DATA DISTRIBUTION

In this section, given the training and test data sets, we study char-
acteristics of learning curves. We first consider a binary classifi-
cation problem given the uniformly distributed data, and then a 
multi-class one given the normally distributed data. Suppose that 
the training data x xN

d
1, ,¼ Î  are given.

We construct the learning curve by increasing the training data 
one-by-one chosen from the given data. We compute the learning 
curve by taking the average, because the learning curve depends on 
how to increase the training data. We will show how to increase the 
data in Appendix A.

3.1.  Binary Classification Problem

Suppose that the dimension f of the feature space is 1 and consider 
a binary classification problem (c = 2). Assume that the training 
data belonging to A and B are given and are uniformly distributed 
as follows:

		  0 1 0 5 0 6 1 0. . , . . ,( ) ( )£ £ £ £x xA Bk k �

where ξA(k) and xB( )k Î  are respectively the k-th training data  
(k = 1, …, N). We hence have training data:

xk
T= Î = ¼[ , ] ( , , ),( ) ( )x xA Bk k k Nd 1

where d = fc = 2. We moreover suppose that the test data corre-
sponding to A and B are given, and that they are respectively labeled 
as A′ and B′. The test data are uniformly distributed as follows:

0 3 0 7 0 4 0 8. ( ) . , . . ,( )£ £ £ £x xA B¢ ¢k k

where ξA′(k) and xB¢ Î( )k  are respectively the k-th test data  
(k = 1, …, M).

We show the distribution of training and test data in Figure 4. The 
classification boundary is 0.55, if the number of the training data 
is sufficiently large, because the boundary is between 0.5 and 0.6 in 
the training data set and the boundary 0.55 maximizes the margin 
of classification. If the number of training and test data, N and M, 
are sufficiently large, the percentage of the blue area in Figure 4 
represents the misclassification rate:

e = - + -
- + -

=
( . . ) ( . . )

( . . ) ( . . )
.0 7 0 55 0 55 0 4

0 7 0 3 0 8 0 4
0 375

The misclassification rate e is obtained by the volume of the mis-
classification areas of A′ and B′ (blue areas), supposing that the 
data of A′ and B′ are uniformly distributed. The accuracy rate is 
moreover given by 1 − e for large M and N.
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Figure 5 | Learning curves. Blue and red curves respectively represent the 
learning curves for the training and test data. The value of the learning 
curve for the test data at i = 300 is approximately 62.5%.

Figure 6 | Training data indicating three classes of A, B and C. The green 
line is the boundary of the classes.

Figure 4 | The distribution of training and test data. The first row represents 
the training data, and the second and third rows the test data. The data in 
the blue area is misclassified by the classification boundary 0.55.

The learning curve is created by plotting the classification accu-
racy 1 − ei against the number of training data i, where ei is mis-
classification rate for i. The accuracy of the learning curve 1 − eN 
approaches 1 − e, as the number of the training data N becomes 
large. We therefore see that the accuracy rate 1 − e of the classifica-
tion for the test data (Figure 4) is related with that for sufficiently 
large data in the learning curve (Figure 5). This fact implies that 
the accuracy rate of K-nearest neighbor is 1 − 0.375 (62.5%), if N 
and M are sufficiently large.

Let us consider the case where N and M are finite. We draw the learn-
ing curves of training and test data by averaging m learning curves 
obtained by the m maps (SN,k); see Appendix A. We use p as an iden-
tifier (p = 1, …, m). We describe the number of the test data for p as 
M(p) and suppose that the classifier sets a classification boundary at 
z(N), given N training data. We express the total numbers of k satis-
fying the following inequalities respectively by MA′(p) and �M p¢A ( ) :

0 3 0 7. , ( ) . ,( ) ( ) ( )£ £ £ £x xA A¢ ¢k z N z N k

meaning that the number of data correctly classified is MA′(p) and 
that the one misclassified is �M p¢A ( ); i.e. the following equation is 
satisfied:

M p M p M p( ) ( ) ( )= +A A¢ ¢
� .

In the same way, we express the total numbers of k satisfying the 
following inequalities respectively by MB′(p) and �M pB¢( ):

z N k k z N( ) ( ) ( ) ( ). , . ,£ £ £ £x xB B¢ ¢0 8 0 4

meaning that the number of data correctly classified is MB′(p) and 
that the one misclassified is �M pB¢( ); i.e. the following equation is 
established:

M p M p M pB( ) ( ) ( )= +B¢ ¢
� .

The accuracy rate 1 − eN is then given by averaging the accuracy cal-
culated from the number of correctly classified data (Appendix A):
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The left hand side of (2) is related to the learning curve at N, and 
the right hand side depends on the test data and the boundary 
set by the N training data. In other words, the right hand side 
represents the percentage of data that does not violate the bound-
ary. It should be noted that the test data are uniformly distrib-
uted, but the right hand side of (2) can be calculated regardless 
of the distribution, by just counting the number of not violating 
the boundary.

3.2.  Multi-class Classification Problem

We study a multi-class classification problem. Let us consider data 
in feature space of f = 2 dimensions and classify them into c = 3 
classes. Suppose that normally distributed data wA(n), wB(n), and 
wC( ) ( , , )n n NfÎ = ¼ 1  are given as training data and labeled 

as A, B, and C, respectively. We then construct vector variables 
xn

dÎ  for (n = 1, …, N):

		  x w w wn = [ , , ] .( ) ( ) ( )A B Cn n nT T T T �

Assume that normally distributed data wA′(n), wB′(n), and 
wC¢ Î( )n f  are given and corresponding to the labels of A, B, and 
C, respectively. Figures 6 and 7 respectively show the training data 
A, B, and C, and test data A′, B′, and C′. The green lines in Figures 
6 and 7 are the classification boundaries trained by all the data A, 
B, and C. The results of drawing individual learning curves for the 
training and test data are shown in Figures 8–10. Averaged learning 
curves for test and training data are shown in Figure 11.

From the individual learning curves of training and test data in 
Figures 8–10, we examine the relationship between the classifica-
tion boundary and the distribution of the training and test data in 
Figures 6 and 7.

Figure 7 | Test data indicating three classes of A′, B′ and C′. The green 
line is the boundary of the classes.
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Figure 12 | Training data of Myo.

Figure 13 | Test data of Myo.

Figure 10 | Learning curves (C, C′). Red line is the learning curve of 
training, and blue line is that of test.

Figure 9 | Learning curves (B, B′). Red line is the learning curve of 
training, and blue line is that of test.

We can obtain the ratio of misclassification caused by changes of 
distribution between training and test, from the gap between the 
learning curves of training and test data. For example, there is a gap 
between A and A′ in Figure 8. In this case, the ratio of test data cor-
rectly classified is lower than that of training data. This is because 
the test data A′ violates the boundary defined by the training data 
A in Figure 7. On the other hand, the data B′ is correctly classified 
by the boundary set by the training data. In this way, we can find 
test data seriously affected by distribution changes, by constructing 
individual learning curves.

4.  EXPERIMENTS

We investigate characteristics of the data of Myo in Section 4.1 and 
propose a method for finding a combination of gestures accurately 
classified in Section 4.2.

Let us consider data in a feature space of f = 8 dimensions and clas-
sify them into c = 24 classes; they corresponds to characters of the 
alphabet except “j” and “z”. Using wl(j) in (1), we define the data 
of Myo in the feature space as w( ) [ , , , ]( ) ( ) ( )j w j w j w j T f= ¼ Î1 2 8  .

Suppose that the training data for the label “a” to “y” except “j” are 
respectively given by wa(n) to wy(n) except wj(n) (n = 1, …, N). We 
moreover construct vector variables:

x w w wn = ¼ Î[ , , , ]( ) ( ) ( )a b yn n nT T T T d ,

where d = fc.

4.1.  Visualization of Myo Data

We visualize the features extracted from the data of Myo to see the 
characteristics of the data distribution. Figures 12 and 13 indicate the 
results of principal component analysis showing eight-dimensional  
feature values obtained from Myo by reducing the dimensions to 
2. Each of the three classes corresponds to a, b, and f gestures. Even 
if Myo is not removed between training data acquisition and test 
data acquisition, the data distribution changes between training 
and test data acquisition, and it makes learning difficult. This is 

Figure 8 | Learning curves (A, A′). Red line is the learning curve of 
training, and blue line is that of test.

Figure 11 | Learning curves (averaged). Red line is the learning curve of 
training, and blue line is that of test.

In the same way as deriving (2), we see that the accuracy of the test 
data B′ is equal to the ratio of the data B′ that does not violate the 
boundary determined by the training data A, B and C. The label 
B′ is indeed classified with 100% accuracy as shown in Figure 9, 
indicating that all test data of B′ are not outside of the trained area 
of B (Figure 7). The label B is also classified with 100% accuracy 
(Figure 9), showing that all training data of B can be trained cor-
rectly (Figure 6). We observe that the labels C and C’ are also classi-
fied with almost 100% accuracy. On the other hand, we see from the 
learning curve in Figure 8 that accuracy of classification of A′ at 300 
sets of data is about 70%. This fact implies that the test data of A′ 
cross the classification boundary and that some of them are outside 
of the classification area of A as shown in Figure 7.
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Figure 14 | Example of learning curves for a gesture (“f ”) to be excluded.

Figure 15 | Example of learning curves for a gesture (“k”) not to be 
excluded.

true for the case where Myo is removed as well. We will there-
fore study verification of a combination of gestures using learning 
curves based on the investigation of the boundary and the test data 
in Section 3.

4.2.  Method for Verification

We verify a combination of gestures that can be classified with 
high accuracy. We first acquire 24 training and test data labeled 
“a” to “y” except “j”. We then make verification, using individual 
learning curves and averaged ones and conducting experiments 
for acquiring data.

Suppose that the numbers of training and test data are the same  
(N = M). Let us draw individual learning curves of training and test 
data. If accuracy is low for a label (e.g. “k”) in both training and test 
data at N and if the gap between them are very small, then there 
is a possibility that accuracy of the classifier for the label (e.g. “k”) 
may be enhanced by excluding another label that makes conflict for 
classification. We should therefore keep such a label (e.g. “k”), if the 
gap between learning curves of training and test data is small. On 
the other hand, if there is a large gap between the training and test 
data in learning curves of a label (e.g. “f ”), then the label (e.g. “f ”) 
should be excluded from the classification target.

We show an example of learning curves for a gesture to be excluded 
in Figure 14. Even if the learning curve of training is seen that 
classification is possible, the gesture should be excluded from the 
classification target in case that the learning curve of test data at 
N indicates low accuracy because of the gap between the training 
and test data. We show another example of the gesture regarded as 
a classification target in Figure 15. Accuracy for training and test 
data are both high, and there is almost no gap between them.

Let us reduce the number of the combination of gestures from cs 
to ce for finding a reliable one. Based on the above consideration, 
the combination of gestures is verified by the following verification 
algorithm.

[Verification algorithm]:

Step 1: Draw individual learning curves and an averaged one for the 
number of classes cs.

Step 2: Exclude the gesture that has a large gap between learning 
curves of the training and test data. If there are no more gestures to 
be excluded, then go to Step 5.

Step 3: Re-acquire data for gestures that are not excluded in Step 2 
and draw the individual and averaged learning curves.

Step 4: Repeat Steps 2 and 3 until there are no more gestures that 
can be excluded in Step 2.

Step 5: Re-acquire data for not excluded gestures and draw the indi-
vidual and averaged learning curves. Check if an averaged learning 
curve has a satisfactory discrimination accuracy. If it is unsatisfied, 
go to Step 2.

In Step 2, excluded gestures are determined by referring the accu-
racy indicated by the learning curve as shown in Figures 14 and 15. 
Suppose that the number of the training data is a. In this experi-
ment, a is 20. The value of a depends on the user who allows how 
much time for learning. The more a is increased, the more time is 
needed for learning. Of course, the user can reduce the value of a 
by seeing the learning curve.

We make experiments and apply the proposed method to the 
data. Since data distribution depends on removal of Myo between 
experiments, we investigate verification by taking the interval 
time between test and training data acquisition into account. We 
thus consider two cases: For the first case we do not remove Myo 
between data acquisition (Case 1), and for the second case we do it. 
We moreover consider two cases in the second case: There is little 
time in the interval (Case 2), and there are several days (Case 3). 
We apply the verification algorithm and conduct experiments in 
the order of Cases 1–3, since the number of the reliable combina-
tion is decreased in the order of them.

4.3.  Results of Experiments

We determined the threshold γ for the gap of accuracy between train-
ing and test data as 20%. We obtained a combination of gestures with 
high accuracy for each of Cases 1–3, extracting a combination of ges-
tures that was not in a trade-off relationship. As a result, we found the  
followings. In Case 1, five gestures “e”, “k”, “q”, “r”, and “y” can be clas-
sified with 100% accuracy. Also, in Case 2, the classifier obtained by 
the verification algorithm can classify the four gestures “e”, “k”, “q”, and 
“y” with 99% accuracy. But in Case 3, only two gestures “k” and “q” are 
classified with 99% accuracy. 

5.  CONCLUSION

In this study, we investigated the relationship between data distri-
bution and learning curves, and we then verified a combination of 
ASL that is accurately classified using a Myo armband. In addition, as 
a result of investigating the characteristics of the data acquired from 
Myo, it was found that the distribution of data changes between the 
interval of training and test data acquisition, and verifications were 
hence carried out for the cases of different intervals. It remains a future 
topic how to determine the threshold γ for the gap to ensure accuracy.
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APPENDIX A.  APPENDICES

Suppose that the data x x1, ,¼ ÎN
d  are given. We pick up the data 

from them and increase the training data from 1 to n(n ≤ N). There 
are many combinations in increasing training data via picking up 
them one-by-one. We construct the learning curve of a classifier 
by averaging them for different combinations, because the learning 
curve depends on how to increase the data.

We explain how to construct the learning curve. Let us consider a 
permutation map sN: {1, …, N} → {1, …, N}. Since there exist N! 
maps for sN, we describe them by sN,k (k = 1, 2, …, N!), where sN,i ≠ 
sN,j (i ≠ j). For sN,k, define x x x� � �

1 2, , ,, , ,k k N k
d¼ Î as:
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where Id is the identity matrix of d × d, and ⊗ is the symbol 

for the Kronecker product [13]. Since x � x� �
1, ,, ,k N k¼  are given by 

changing the order of x1, …, xN, the following equation holds for 
k = 1, …, N!

x x x xN� �
1 1, ,, , , , ,k N k¼{ } = ¼{ }

meaning that the set of x1, …, xN and that of x x x� � �
1 2, , ,, , ,k k N k¼  are 

same. Define a set Di k k i k, , ,, ,= ¼{ }x x� �
1  and let hi,k be the classi-

fication accuracy of the classifier learning from the training data  
Di,k(i = i0, …, N), where i0 is the minimum number of data required 
for the classifier. Let us randomly choose m maps from the maps 
sN,k (k = 1, 2, …, N!) and take an average for accuracy hi,k for the 
training data Di,k:

h h�
i

k

m

i km
=

=
å1

1
, .

The index i and averaged accuracy h�i  construct a learning curve 
for the training data. Given the test data, let qi,k be accuracy of the 
classifier for the training data Di,k and take an average for qi,k for 
the training data Di,k:

q q�
i

k

m

i km
=

=
å1

1
, ,

where i and h�i  construct a learning curve for the test data.
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