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 1.  INTRODUCTION

Neuromorphic computing is an attempt to realize a computing archi-
tecture capable of complex and robust calculations with low power 
consumption, which is designed by either imitating or inspired by 
the information processing mechanisms in the nervous system.

Unlike the conventional von Neumann computer architecture in 
which CPU and memory units exist separately, the neuromor-
phic hardware generally has highly distributed computation and 
memory units. Such a massively parallelized computation which 
overcomes the von Neumann bottleneck is expected to reduce 
overall energy consumption.

Silicon Neuronal Networks (SiNNs) are a neuromorphic hardware 
that attempt to reproduce the electrophysiological activities in the 
nervous system by electronic circuits. Models of neurons, synaptic 
activities and designs of underlying algorithms are crucial factors 
as the components in the SiNNs. Many neuron models have been 
proposed for reproducing various traits of neurons. However, they 
generally undergo the problem of trade-off between implementa-
tion cost and biological plausibility [1].

Digital Spiking Silicon Neuron (DSSN) model is a qualitative 
neuron model which reproduces dynamical structure in various 
neuronal firing activities and is designed to be implemented effi-
ciently on digital circuit [2].

As a fundamental model of neuromorphic computation, an all-
to-all connected network composed of DSSN model has been 

implemented and autoassociative task was performed [3]. The 
network retrieved a stored pattern given corresponding cor-
rupted input patterns, and its performance varied greatly on 
each neuron’s parameters. It was shown that the performance 
is dependent on the class of the neuron model (Class 1 and 2 in 
Hodgkin’s Classification).

In our study we adopt the equivalent system, however, we incorpo-
rate Regular Spiking class for each neuron. Regular Spiking class 
exhibit Spike Frequency Adaptation (SFA) which is a convergence 
of firing frequency from high value to a low value given a step cur-
rent with sufficiently large magnitude.

Moreover, the strength of SFA is known to be reduced by cho-
linergic modulation [4] and it has been modeled on network of 
Hodgkin Huxley type neuron model [5,6]. We aim to apply and 
utilize the modulatory effect for neuromorphic computing. For this 
purpose, we studied network dynamics by altering corresponding 
parameters of the DSSN model.

2.  NEURON AND SYNAPSE MODEL

Two variables in the DSSN model, membrane potential v and a 
variable n that represents a group of ion channels, are responsible 
for generating neuronal spikes.

Spike frequency adaptation is reproduced by introducing an addi-
tional slow negative feedback variable q, which results to 3-variable 
DSSN model [7]. For simplicity, we adopt the following 3-variable 
DSSN model with linear q-nullcline [7] instead of the nonlinear 
q-nullcline model [8].
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A B S T R AC T
Digital Spiking Silicon Neuron (DSSN) model is a qualitative neuron model specifically designed for efficient digital circuit 
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Parameters afn, bfn, cfn, afp, bfp, cfp are tuned to reproduce the v nullcline. 
Similarly, parameters agn, bgn, cgn, agp, bgp, cgp determine the shape of the 
n nullcline. Parameter I0 is a constant that model bias current and Istim 
represents input stimulus. Since DSSN model is a qualitative model, 
all variables are dimensionless except t which is modeled such that 
its value is set approximately at a timescale of seconds. Parameters f, 
t and e control time constants of variables v, n and q. In particular,  
e controls decay time of adaptation dynamics.

Parameter a controls strength of SFA, which is defined as the dif-
ference of Inter-spike-Interval (ISI) between the initial and the 
converged state. When a is low, the effect of SFA is strong (see 
Figure 1). Since SFA is known to be reduced during cholinergic 
modulation, magnitude of a can be mapped to concentration of 
Acetylcholine during modulation.

Synaptic current of each neuron is modeled as,
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where asyn = 83.3 and bsyn = 333.3.

3. � NETWORK CONFIGURATION  
AND METHOD

Our network model is an all-to-all connected network of 256 neu-
rons (3-variable DSSN model), and synaptic efficacy in each syn-
apse is given by synaptic weight matrix W. External input to ith 
neuron is given as,
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Figure 1 | Spike frequency adaptation observed in DSSN model for a = 
0.05 (Top) and 0.1 (Bottom).

where c is a parameter that denotes the magnitude of neuronal 
interaction and Iext is a constant bias current.

Four mutually orthogonal patterns (Figure 2a) were stored in the 
network by configuring synaptic weight matrix W by the following 
correlation rule,
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Here, x is a vector of size 256, where pixels in a pattern (16 × 16 pixels) 
are binary coded: +1 for black pixel and −1 for white pixel. wu encodes 
weight bias of each pattern which are set as wu = 1.0 (u = 1, 2, 3, 4) in 
the following simulations unless explicitly noted. Based on the stored 
patterns, we produced sets of corrupted input patterns, where certain 
percentage of randomly selected pixels are inverted. Figure 2b shows 
an example of sets of input data computed based on Pattern 1.

The autoassociative task is performed as follows: First, we initial-
ized the network state with corrupted input data by injecting step 
current Iext = 0.15 for 0.5 s (1334 timesteps) to the neurons that 
encode black pixel. Then, we stimulated all the neurons with Iext = 
0.15 to evoke repetitive neuronal activity.

We evaluated the network state by introducing Phase Syn
chronization Index (PSI) which quantifies the level of synchro-
nization, and an overlap index Mu which quantifies the similarity 
between firing times of every neuron and uth stored pattern. Based 
on the firing phase in the repetitive firing activity, PSI and overlap 
between the network output is computed by,
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where firing phase of neuron j is defined as,
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(tk:kth firing time of neuron j)

Figure 2 | (a) Stored patterns. (b) Input data (based on Pattern 1).
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4.  SIMULATION RESULTS

4.1.  Weak Neuronal Interaction

We obtained stable overlap dynamics and high retrieval per-
formance at the weak neuronal interaction region (c = 0.005). 
Figure 3 shows a successful retrieval process of Pattern 1. Figure 4 
shows the retrieval performance evaluated over 100 trials for each 
value of a. Each trial was performed until t = 10. For a = 0.05 and 
0.1, the successful retrieval rate keeps higher than 90% when the 
error rate is equal to 30% or less, which is comparable with network 
of class 2 neurons [3].

The superiority of retrieval performance can be reasoned by 
biphasic (Type 2) Phase Response Curve (PRC) [9] of neurons 
(Figure 5). It is known that slow negative feedback current is 
responsible for Type 2 PRC [5]. In addition, it is commonly 
known that most class 2 neurons have Type 2 PRC. These results 
support the comparable performance between network of class 
2 neurons and our model.

Phase response curve of Regular Spiking class neuron was computed 
by applying a perturbation only after the adaptation has fully stabi-
lized to determine a unique firing period. As a result, we found that 
the zero-phase-shift-crossing point is essentially altered by a  which 
in effect alters the overall retrieval performance. In other words, we 
may be able to design optimal PRC with a for retrieval tasks.

Magnitude of phase shift (ΔF) may not be an essential factor of the 
performance since increasing the magnitude of neuronal interac-
tion did not give significant improvements (Figure 6).

4.2.  Moderate Neuronal Interaction

We observed chaotic transition within stored patterns (Chaotic 
itineracy) when we set moderate neuronal interaction (c = 0.05). 
Figure 7a shows overlap dynamics with different a. Figure 7b is the 
staying period distribution without distinguishing patterns which 
were retrieved for a certain time. Maximum staying period was 
extended by decreasing a.

Previous study with the discrete Hopfield Network showed that 
adaptation term has a similar effect as a temperature term which is 

Figure 3 | Overlap dynamics in a successful retrieval process.

Figure 5 | Phase response curve of 3-variable DSSN model.

Figure 4 | Retrieval performance. x-axis shows error rate of the input 
pattern. y-axis is the percentage of successful retrieval. Successful retrieval 
was defined when PSI and overlap of corresponding input pattern 
exceeded 0.9.

Figure 6 | Retrieval performance at c = 0.005 and 0.01 (a = 0.2).

Figure 7 | (a) Overlap for c = 0.05. (Top) a = 0.1, (Bottom): a = 0.07.  
(b) Duration distribution (ISI-Normalized) of the pattern retrieval. Averaged 
from 10 trials of t = 1000 simulation and 40 bins. Retrieval is defined when 
overlap exceeded 0.8. Dashed blue line shows when count = 1.0.

(a)

(b)



66	 N. Takano and T. Kohno / Journal of Robotics, Networking and Artificial Life 7(1) 63–67

Figure 8 | Retrieval count of strong attractor and average count of weak 
attractors. Average computed from 40 trials.

Figure 9 | Stability matrix computed from gradient of average divergence 
(log scale) between fiducial trajectories and 10 perturbed trajectories for 
each fiducial trajectory. Color bar shows gradient value.

known to destabilize attractors [6]. Similarly, in our model, variable 
q and SFA strength a is assumed to be responsible for destabiliza-
tion of attractors leading to chaotic itineracy.

We then introduced heterogeneity in the network by grading each 
stored pattern with weight bias wu. “Strong attractors” and “weak 
attractors” were distinguished by the size of wu. We set w1 = 1.03 
and w2,3,4 = 1.0 (Pattern 1 corresponds to the strong attractor and 
the others weak). Then, we counted how often each pattern was 
retrieved (when overlap for the pattern exceeded 0.8) and observed 
the preference of attractor strength being modulated by a (Figure 8).  
Strong preference for strong attractor is observed at a = 0.1, 
whereas the preference is relaxed as a is decreased.

4.3.  Transition of Dynamical Behavior

Effects of c and a on the network’s dynamical behavior is analyzed 
in the following stability matrix (Figure 9). Each value of the matrix 
is computed by calculating the gradient of the log-scaled Euclidean 
distance between fiducial trajectories (vector of v, n, q, Is of 256 
neurons) and perturbed trajectories. The value approximates larg-
est Lyapunov exponent of 1024 dimension dynamical system. We 
confirmed that the system is stable at small c region (the gradi-
ent of divergence is 0 or below), and becomes chaotic at larger  
c (positive gradient of divergence). Stability may also be altered by 
a where smaller value leads to more stable dynamics, although fur-
ther detailed analysis is needed.

5.  DISCUSSION

We constructed an autoassociative memory composed of 3-variable 
DSSN model which exhibit SFA. As a result, various dynamics were 

observed at different parameter regions of c and a. By setting small 
c value, the effect of neuronal interaction may be considered as per-
turbations applied to each neuron, therefore evoking a characteris-
tic of PRC: Type 2 PRC caused from the slow feedback current led 
to high retrieval performance. On the other hand, the synchronous 
network behavior switches to chaotic itineracy when c is increased. 
In this region, it can be assumed that destabilization effect caused 
by SFA [6] becomes more significant.

To model the level of Acetylcholine volume, we then investigated 
a-dependent effects at the above distinct regions resulting in rich 
dynamics. Although some biological correspondence, especially 
on the modulation of attractor strength preference (Figure 8) is 
discussed in the prior research [6], biological plausibility of our 
numerical simulation results such as duration distribution of the 
retrieval (Figure 7) need to be discussed in future.

From the engineering perspective, it is known that all-to-all con-
nected networks are applicable to solving optimization problems 
[10]. Moreover, chaotic dynamics can be utilized to escape the local 
minima and obtain the global minima [11]. Similarly, our spiking 
neural network may be developed to solve optimization problems 
on low power hardware in the future. All results in this work were 
obtained by floating-point operations on software simulation 
(Euler method dt = 0.000375). One of the future works is to imple-
ment our models in fixed-point operations on FPGA devices.

APPENDIX

Table 1 | Parameter set for 3-variable DSSN model

Par. Val. Par. Val. Par. Val.

afn 8.0 bfn −0.25 cfn −0.5
afp −8.0 bfp 0.25 cfp 0.5
agn 4.0 bgn −2−4 - 2−5 cgn −0.77083333
agp 16.0 bgp 2−5 - 2−2 cgp −0.6875
t 2−9 f 0.625 rg −0.26041666
e 0.03 v0 −0.41 I0 −0.09

Par., Parameter; Val., Value. (v0 and e take original values in this paper.)
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