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1.  INTRODUCTION

Neuromorphic systems are designed by mimicking or being 
inspired by the nervous system, which aims to process informa-
tion in robust, autonomous, and power-efficient manner. There are 
three common methods to realize them, which are software [1], 
analog hardware [2,3] and digital hardware [4–6]. Compared to 
analog circuits, digital implementations generally consume higher 
power but are more scalable and tunable and less sensitive to noise 
and fabrication mismatch. Compared to software implementation, 
digital hardware works in real-time.

Spiking Neuronal Network (SNN) is inspired by information 
processing in the nervous system and can reproduce its elec-
trophysiological activities by implementation on neuromorphic 
circuits.

The SNNs are modeled by focusing on asynchronous spiking 
dynamics in the neuronal cells and their transmission via the syn-
apses. Their application includes bio-inspired information process-
ing such as pattern recognition [7,8] and associative memory [9] as 
well as neuro-prosthetic devices [10–12].

Digital SNNs are expected to realize a very large-scale network 
comparable to the human brain in the future exploiting the scal-
ability of digital circuits. In the last years, several very large-scale 
SNNs with one million neurons were developed [13].

Spike Timing Dependent Plasticity (STDP) is a well-known rule 
for updating the synaptic efficacy in SNNs, which uses only local 

information. There are many evidences found for STDP process  
in the synapses [14,15] in biological experiments.

In this paper, we report an implementation of digital SNN with 
online STDP learning on  Field Programmable Gate Array (FPGA). 
The model and implementation of our SNN are explained in 
Sections 2 and 3, respectively. Then results and conclusion follows.

2. � ARCHITECTURE OF THE NETWORK 
MODEL

2.1.  DSSN Model

Choice of neuronal models needs considering the balance between 
the reproducibility of neuronal activity and computational effi-
ciency. Integrate-and-fire-based models are able to be implemented 
by compact hardware, but they lack reproducibility of complex 
neuronal dynamics. Ionic-conductance models have a high ability 
to reproduce neuronal activities, but it requires massive computa-
tional resources. The Digital Spiking Silicon Neuron (DSSN) model 
is a qualitative neural model [16], which was designed for efficient 
implementation in digital circuits. The simplest version of DSSN 
model supports the Class I and II cells in Hodgkin’s Classification 
[17]. The differential equations of DSSN model are as follows.
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A B S T R AC T
By mimicking or being inspired by the nervous system, neuromorphic systems are designed to realize robust and power-efficient 
information processing by highly parallel architecture. Spike Timing Dependent Plasticity (STDP) is a common learning method 
for Spiking Neural Networks (SNNs). Here, we present a real-time SNN with STDP implementation on Field Programmable Gate 
Array (FPGA) using digital spiking silicon neuron model. Equipped with Ethernet Interface, FPGA allows online configuration 
as well as real-time processing data input and output. We show that this hardware implementation can achieve real-time pattern 
recognition tasks and allows the connection between multi-SNNs to extend the scale of networks.
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Figure 1 | Overall architecture of STDP learning.
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Here v represents the membrane potential, n is a variable that 
reflects the activities of hyperpolarizing ionic channels. axy, bxy, 
and cxy (x = f, g and y = n, p) are parameters. Istm represents the 
input stimulus and the parameter I0 is a bias constant. The only 
nonlinearity in the DSSN model is a quadratic function. Therefore, 
numerically solving this model using Euler’s method requires just 
one multiplication operation per step if the parameters are carefully 
selected [9,18]. Due to the high resource requirements of digital 
circuits for multiplication operations, the DSSN model is suitable 
for digital SNN circuit.

2.2.  Synaptic Model

Post-synaptic Current (PSC) is a type of current inserted into 
the post-synaptic cell that induces temporal change in its mem-
brane potential. The PSCs generated by pulse-stimulated chem-
ical synapses are able to be modeled by the alpha function with 
double-exponential generalization [19]. In our network model, 
the PSP model was simplified to one exponential function as 
follows.
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Here x represents PSC generated by a chemical synaptic transmis-
sion. It is reset to w, the connection strength of the synapse, when 
the membrane potential of the pre-synaptic neuron exceeds 0. The 
initial value of w is 6 × 10−10. The PSCs in the synaptic connections 
to a post-synaptic cell are summed up as follows.

	 I xistm = å . �  (6)

Here i represents index of pre-synaptic neurons.

2.3.  STDP Algorithm and Architecture

Synaptic plasticity is a basis for learning in the nervous system. The 
synaptic efficacy is updated in response to the activities of pre- and 
post-synaptic neurons.

The STDP is a rule for synaptic plasticity that adjusts the strength of 
synaptic connections (w) based on the relative timing of the spikes 
in a pre- and post-synaptic neurons. Recently it has been shown 
how STDP rule play a key role by detecting repeating patterns and 
generating selective response to them [20].

The STDP rule is a most common form of learning rules used in 
SNNs. Here is the standard exponential STDP equations.
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Here ∆w is the updating of the synaptic weight. When a post- 
synaptic spike arises after a pre-synaptic spike (tj ≤ ti), the connec-
tion is enhanced [Long-term Potentiation (LTP), ∆w > 0), whereas 
in the opposite case it is weakened (Long-term Depression (LTD)].

3.  IMPLEMENTATION

The overall architecture of our SNN is shown in Figure 1. The 
DSSN, STDP, and PSC blocks were implemented on a FPGA board. 
In this development platform, three post-synaptic neurons are  
each connected with 500 input afferent neurons for detecting one 
certain repeating pattern. All the circuits were described using Very 
High Speed Hardware Description Language (VHDL). Stimulus 
spike trains were generated by Brian2 on PC and sent to FPGA via 
Ethernet connection which are explained in Subsection 3.4.

3.1.  Implementation of DSSN

Euler’s method is used to solve the differential equation of the 
DSSN model with the timestep of 0.1 ms. The solver circuit uses 
Time Division Multiplexing (TDM) and pipelined architecture 
Each DSSN model cost 0.19% Look-Up-Tables (LUT) in Xilinx 
XC7K325T chip [18].

3.2.  Implementation of PSC

As introduced in Subsection 2.2, we use a simplified exponen-
tial decay to approximate the PSCs. The connection between a 
post-synaptic neuron and the 500 pre-synaptic neurons was cal-
culated efficiently by using TDM and two-stage pipeline as in the 
DSSN solver circuit. By using a single multiplier and a single adder, 
500 sets of PSC operations are completed in 1000 clock cycles with 
a frequency of 100 MHz. If the system clock is higher than 100 
MHz, the time step of the summation of PSCs is within 0.1 ms.

3.3.  Implementation of STDP Learning

Based on the STDP rule, each pre-synaptic (post-synaptic) spike, 
induces an LTD (LTP) where the synaptic weight is updated 
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Figure 2 | Waveform of STDP method implementation.

according to Equation (7). An example waveform of STDP learning 
process is shown in Figure 2, where the solid and dotted red curve 
represent the pre- and post-synaptic spikes, as well as the black 
curve is the strength of synaptic connection. In order to simulate 
500 afferent inputs, 500 clock cycles were consumed. Calculation of 
exponential function and update of synaptic efficacy are executed 
by TDM.

3.4.  Ethernet on FPGA

Ethernet is a computer networking technology commonly used 
in Local Area Networks (LAN). Devices equipped with Ethernet 
interfaces are connectable to LAN as well as the internet by sup-
porting common communication protocol, for instance, TCP/IP 
and User Datagram Protocol (UDP). When implementing neuron 
networks on FPGAs, the transmission of spikes has always been an 
issue when the neuronal network becomes large.

By implementing Ethernet interface and a full hardware protocol 
stack including IP, UDP and Address Resolution Protocols (ARP), 
our SNN on FPGA is capable of receiving input spike patterns from 
a PC via Ethernet connection and sending report frame back to the 
PC for monitoring the SNN working status.

The configuration and parameter setting are also possible by the 
Ethernet connection, which contribute to take full advantage of the 
flexibility and portability of FPGAs.

4.  PATTERN RECOGNITION

Spatiotemporal spike pattern recognition tasks proposed by 
Masquelier et al. [21] were performed on our network. In these 
tasks, the stimulus patterns were generated by superimposing a 
spatiotemporal spike pattern at many time points on a background 
random spike pattern (see Figure 3a). The former spike patterns 
(ones to be detected) were generated by PoissonGroup Function in 
Brian2 (a Python library) on PCs. The background random spike 
patterns were generated using the same library. The stimulus pat-
terns were stored in files and sent from the PC to the FPGA via the 
Ethernet connection. In the afferent input spike train, spike patterns 
to be detected appears repeatedly. Given such input, STDP learn-
ing eventually makes post-synaptic neurons generate a spike in 
response to one of the spike patterns to be detected (see Figure 3b).  
Rate of successful recognition versus number of post-synaptic neu-
rons is shown in Figure 4. Here, the post-synaptic neurons have 
different initial weight distributions each other. When the network 
comprises three post-synaptic neurons or more, the success rate 
was 100%. Our circuit performed this task in real-time with FPGA’s 
system clock of 100 MHz.

5.  CONCLUSION

In this paper, a SNN on an FPGA with STDP learning capability 
were reported. The stimulus spikes were transmitted to the FPGA 
chip in real-time via Ethernet connection. Experimental results 
support that our SNN has real-time spatiotemporal spike pattern 
recognition capability.

In this work, the input patterns were generated on a PC. Generating 
them in real-time with another SNN is a future work. By increas-
ing the number of the post-synaptic neurons, multi-repeating- 
pattern detection at the same time will be realized in our cir-
cuit in the future. Since the number of on-chip memories used 
to store the strength of synaptic connections limits the size of 
the network on the FPGA chip, it is also planned to develop an 
FPGA–FPGA connection bus to extend the scalability of FPGA-
based SNNs. From the perspective of real-time and power con-
sumption, the SNN platform has higher scalability than software 
simulation.
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Figure 4 | Three post-synaptic neurons lead to 100% of learning  
success rate.

Figure 3 | (a) An example of afferent input data and (b) waveform of a 
postsynaptic neuron’s membrane potential that learned to generate a spike 
in response to an input spike pattern [red dots in (a)].
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