
Research Article

Proposal of an Algorithm to Generate VDM++ Specification
Based on its Grammar by Using Word Lists Extracted from
the Natural Language Specification

Tetsuro Katayama1,*, Yasuhiro Shigyo1, Yoshihiro Kita2, Hisaaki Yamaba1, Kentaro Aburada1, Naonobu Okazaki1

1Department of Computer Science and Systems Engineering, Faculty of Engineering, University of Miyazaki, 1-1 Gakuen-kibanadai nishi,
Miyazaki, 889-2192 Japan
2Department of Information Security, Faculty of Information Systems, Siebold Campus, University of Nagasaki, 1-1-1 Manabino, Nagayo-cho,
Nishi-Sonogi-gun, Nagasaki, 851-2195 Japan

1. INTRODUCTION

Software bugs make a huge impact on our society [1,2]. Most of
them can be caused by the general use of a natural language in the
upstream process of software development because the natural lan-
guage contains an ambiguity. The ambiguity can drive program-
mers to misinterpret the specification [2]. Hence, the programmer
might embed some bugs in the program.

One way of solving this problem is to design software in the
upstream process by using a formal method. In development by
using it, specifications are written in a formal specification lan-
guage based on mathematical logic. They can be proved the math-
ematically by using theorem proving and mechanical checking [3].
It allows for precise design without the ambiguity.

Vienna Development Method (VDM)++ is a formal specification
language that can handle object-oriented modeling [4]. VDM++
has strict grammar. Because of the strict grammar, it is difficult to
describe them because they are needed to write data types and system
invariants that are not available in a natural language specification.

This study attempts to generate a VDM++ specification automat-
ically from a natural language specification by machine learning.
In the automatic generation of a VDM++ specification, it is neces-
sary to extract words that consist of predicates and nouns from the
natural language specifications. The predicates are corresponding
to functions and nouns are corresponding to variables, respectively.

However, it is difficult to use the extracted nouns and predicates
along with the grammar of VDM++ specification. A VDM++ spec-
ification cannot be described from the only extracted nouns and
predicates.

This paper proposes an approach to generate VDM++ specification
from the extracted nouns and predicates.

2. VDM++

Vienna development method is one of the formal methods.
VDM++ is an object-oriented extension of the VDM-SL language
and is currently most used in VDM [4].

Table 1 shows the definitions in VDM++ as a target in this paper.
The keywords contain the number of elements and syntax infor-
mation. The syntax is the set of description rules in VDM++, and
each element corresponds to ordinal numbers in the syntax in
Table 1 [4].

3. THE PROPOSED APPROACH

The proposed approach automatically generates a VDM++ specifi-
cation. Figure 1 shows the flow of the proposed approach.

 1. Extract a word list from a natural language specification. It is
referred to as a word list as the extracted word list.

A RT I C L E I N F O
Article History

Received 10 November 2019
Accepted 21 May 2020

Keywords

Natural language specification
VDM++
automatic generation
formal method
formal specification

A B S T R AC T
The natural language includes ambiguous expressions. Vienna Development Method (VDM) is one of methodology on the
formal methods to write the specification without ambiguity. Because VDM++ is written by strict grammar, it is difficult to
write a VDM++ specification. This research attempts to generate a VDM++ specification automatically from a natural language
specification by machine learning. To generate a VDM++ specification, it is necessary to extract words that consist of predicate
corresponding to the function and nouns corresponding to variable from the natural language specification. This paper proposes
an approach to generate a VDM++ specification based on its grammar from the classified word list. Identifiers are generated
from the classified word list, and then the VDM++ specification can be generated by converting them into VDM++ grammar.

© 2020 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Journal of Robotics, Networking and Artificial Life
Vol. 7(3); December (2020), pp. 165–169

DOI: https://doi.org/10.2991/jrnal.k.200909.005; ISSN 2405-9021; eISSN 2352-6386
https://www.atlantis-press.com/journals/jrnal

*Corresponding author. Email: kat@cs.miyazaki-u.ac.jp

http://creativecommons.org/licenses/by-nc/4.0
https://doi.org/10.2991/jrnal.k.200909.005
https://www.atlantis-press.com/journals/jrnal
mailto:kat%40cs.miyazaki-u.ac.jp?subject=

166 T. Katayama et al. / Journal of Robotics, Networking and Artificial Life 7(3) 165–169

 2. Classify word list by machine learning from the extracted
word list. It is referred to as a word list as the classified
word list.

 3. Insert an identifier into the classified word list.

 4. Get the identifier from the word list into which the identifier
is inserted.

 5. Put the elements of each word list into the VDM++ specifica-
tion syntax corresponding to the gotten identifier.

This paper focuses on 3–5 steps (lower frame of Figure 1). Here,
the generation of a classified word list by machine learning from
the natural language specification in 1 and 2 steps is a future issue.

3.1. The Data Structure

The proposed approach defines two data structures: classified word
list and identifier.

3.1.1. Classified word list

A classified word list is a per line of the list of elements required
to generate an identifier based on a syntax for a variable or func-
tion. Figure 2 shows the flow of the identifier insertion process
described in Section 3.2.1. It also shows an example of a classified
word list at the upper.

Each column of the classified word list is explained as follows. The
element in the first column (Column A) is a temporary ID, and it is
replaced with an identifier later. The element in the second column
(Column B) is the variable name or function name described in the
VDM++ specification.

The elements in the third column (Column C) and the subsequent
columns differ depending on each target: values, types, instance
variables, and operations.

Figure 1 | The flow of the proposed approach.

Table 1 | The definitions in VDM++

VDM++ keyword Number of elements Syntax

Values 2 1st = 2nd
Types 2 public 1st = 2nd
Instance variables 3 1st: 2nd: = 3rd
Operations 5 or more public 1st: 2nd ⇒ 3rd pre

4th post 5th

 • In the case of the values, the element in Column C is real value.

 • In the case of the types, the element in Column C is type’s name.

 • In the case of the instance variable, the columns after Column
C consist of the type name and initial value. In another case, the
values may not be specified.

 • In the case of the operations, the columns after Column C consist
of a pre-condition, post-condition, function argument, delimiter
“#”, and return type.

3.1.2. Identifiers

Identifiers are generated based on the number of elements in the
classified word list corresponding to the keywords of the VDM++
in Table 1. The insertion condition of each identifier in the classi-
fied word list is described as follows.

 • The “values” keyword indicates that the number of elements in the
second and subsequent columns (Column B or later) of the clas-
sified word list is 2, and the third column (Column C) is a value.

 • The “types” keyword indicates that the number of elements in
the second and subsequent columns (Column B or later) of the
classified word list is 2, and the third column (Column C) is a
type definition. If the number of elements is 1, the element in the
third column (Column C) is real.

 • The “instance variables” keyword indicates that the number of
elements in the second and subsequent columns (Column B or
later) of the classified word list is 3.

 • The “operations” keyword indicates that the number of elements
in the second and subsequent columns (Column B or later) of the
classified word list is 5 or greater.

Figure 2 | The flow of the identifier insertion process.

 T. Katayama et al. / Journal of Robotics, Networking and Artificial Life 7(3) 165–169 167

3.2. The Approach Process

To generate VDM++ specification, it is proposed two algorithms:
the identifier insertion process and the VDM++ specification con-
version process.

3.2.1. Identifier insertion process

Figure 2 shows the flow of the identifier insertion process. The
identifier insertion process replaces a temporary ID in the 1st
column (Column A) of the classified word list with an identifier
following the conditions described in Section 3.1.2.

3.2.2. VDM++ specification
conversion process

Figure 3 shows the flow of the VDM++ specification conversion
process. The VDM++ specification conversion process describes
the VDM++ specification based on the identifier inserted list.

How to describe the VDM++ specification is explained. First,
the “class <class-name>” is described on the first line. The word
“<class-name>” is described as the class name of the speci-
fication. The “<class-name>” is given as an argument when
we generate the specification. Next, each VDM++ keyword is
described. Statements are written after the keyword according

to the syntax. Finally, the “end <class-name>” is described to
the end of the line.

As an example, the third row of the list in which the identi-
fier is inserted in Figure 2 is described. The first step reads the
identifier of the first column and finds the “values”. The second
step, according to its syntax “1st = 2nd;”, associates “appropri-
ate_BMI_upper_limit” in the second column (Column B) and
“30” in the third column (Column C) of the identifier inserted
list, respectively. The final step writes the statement “appropri-
ate_BMI_upper_limit = 30;” after keyword “types” that in the
VDM++ specifications.

4. APPLICATION EXAMPLES
AND DISCUSSION

We have developed two tools: an inserter and a converter, which
are implemented in the two proposed process. They have applied a
classified word list to the inserter and an identifier inserted list to
the converter.

The upper of Figure 2 shows the input of inserter, and the lower
of Figure 2 shows the output of the inserter. For each row in the
output list, we verify that the identifier can be inserted correctly
as follows. Rows 1–3 in the classified word list represents a vari-
able with an initial value. Because the number of elements in
the second and subsequent columns (Column B or later) of the
input list is 2, and the third column (Column C) is a number, the
inserter inserts an identifier “values”. Rows 4 and 5 represents a
variable that defines only the types. Because the number of ele-
ments in the second and subsequent columns (Column B or later)
of the input list is 1, the inserter inserts an identifier “types”. Row
6 represents the instance variable. Because the number of the ele-
ments in the second and subsequent columns (Column B or later)
of the input list is 3, the inserter inserts an identifier “instance
variables”. Rows 7–10 represent operations. Because the number
of elements in the second and subsequent columns (Column B or
later) of the input list is 5 or greater, the inserter inserts an iden-
tifier “operations”. Thus, the inserter can generate an identifier
inserted list correctly.

The upper of Figure 3 shows the input of a converter and the
lower of Figure 3 shows the output of the converter. The output of
the inserter in Figure 2 is the same as the input of the converter in
Figure 3. We verify that the converter generates a VDM++ spec-
ification correctly based on the syntax in Table 1 as well as the
inserter. We confirm that the converter can generate the VDM++
specification that consists of statements corresponding to the
syntax in Table 1.

Furthermore, we verify that the VDM++ specification generated
by the tools based follows the VDM++ syntax. Figure 4 shows
an output of the converter to describe the VDM++ specification.
VDM++ Toolbox with syntax and type checker displays no warn-
ing for the generated VDM++ specification. Therefore, we have
confirmed that the proposed process can automatically generate
the VDM++ specification corresponding to the VDM++ syntax
from the classified word list.Figure 3 | The flow of VDM++ specification conversion process.

168 T. Katayama et al. / Journal of Robotics, Networking and Artificial Life 7(3) 165–169

5. CONCLUSION

This paper has proposed the approach to aim at automatically
generating a VDM++ specification from the classified word list.
It means this paper proposes 3–5 steps (lower frame of Figure 1).
As a constraint, it assumes that a classified word list is gener-
ated by the machine learning from a natural language specifica-
tion by the steps 1 and 2. As a result, the VDM++ specification
can be automatically generated from the list, which will be able
to classify from the natural language specification by machine
learning.

We confirmed that the VDM++ specification is generated by
applying the classified word list to the proposed approach. From
this result, it can be useful by the automatic generation of VDM++
specifications.

Future issues are as follows:

 • Generating a classified word list by machine learning from a
natural language specification.

 • Corresponding to another syntax in VDM++.

About the first issue, it corresponds to steps 1 and 2 in Section 3.
We think that it is possible to generate the classified word list from
the natural language specification by implementing the following.

 1. Generate a modification relation by extracting the variable
names and function names from the natural language
specification.

 2. Let a model learn the elements to insert the identifiers by
using the modification relation [5].

 3. Generate the classified word list from the extracted word list
by using the learning model.

CONFLICTS OF INTEREST

The authors declare they have no conflicts of interest.

 REFERENCES

 [1] E. Marcus, H. Stern, Blueprints for high availability, Wiley
Publishing, Hoboken, NJ, USA, 2003. Available from: https://
dl.acm.org/doi/book/10.5555/2826066.

 [2] National Institute of Standards and Technology (NIST), Depart-
ment of Commerce, Software errors cost U.S. economy $59.5 bil-
lion annually, NIST news release 2002-10, 2002. Available from:
http://www.abeacha.com/NIST_press_release_bugs_cost.html.

 [3] M. Fähndrich, M. Barnett, F. Logozzo, Embedded contract lan-
guages, Proceedings of the 2010 ACM Symposium on Applied
Computing (SAC), Association for Computing Machinery, 2010,
pp. 2103–2110. Available from: https://www.researchgate.net/
publication/221002507_Embedded_contract_languages.

 [4] International Organization for Standardization, “ISO/IEC 13817-
1:1996, Information technology - Programming languages, their
environments and system software interfaces - Vienna Develop-
ment Method - Specification Language - Part 1: Base language”,
International Organization for Standardization, 1996. Available
from: https://www.iso.org/standard/22988.html.

 [5] S. Ioffe, C. Szegedy, Batch normalization: accelerating deep net-
work training by reducing internal covariate shift, Proceedings
of the 32nd International Conference on Machine Learning
(ICML), 2015, pp. 448–456. Available from: http://proceedings.
mlr.press/v37/ioffe15.html.

Figure 4 | The VDM++ specification displayed by VDM++ Toolbox.

https://www.researchgate.net/publication/221002507_Embedded_contract_languages
https://www.researchgate.net/publication/221002507_Embedded_contract_languages

 T. Katayama et al. / Journal of Robotics, Networking and Artificial Life 7(3) 165–169 169

AUTHORS INTRODUCTION

Tetsuro Katayama

He received the PhD degree in engineer-
ing from Kyushu University, Fukuoka,
Japan in 1996. From 1996 to 2000 he
has been a Research Associate at the
Graduate School of Information Science,
Nara Institute of Science and Technology,
Japan. Since 2000 he has been an Associate
Professor at Faculty of Engineering,
Miyazaki University, Japan. He is cur-

rently a Professor with the Faculty of Engineering, University of
Miyazaki, Japan. His research interests include software testing
and quality. He is a member of the IPSJ, IEICE, and JSSST.

Yasuhiro Shigyo

He received the Bachelor’s degree in engi-
neering (Computer Science and Systems
Engineering) from University of Miyazaki,
Japan in 2019. He is currently a Master’s
student in Graduate School of Engineering
at the University of Miyazaki, Japan. His
research interests natural language pro-
cessing and formal specifications.

Yoshihiro Kita

He received a PhD degree in Systems
Engineering from University of Miyazaki,
Japan, in 2011. He is currently an Associate
Professor with the Faculty of Information
Systems, University of Nagasaki, Japan.
His research interests include software
testing and biometrics authentication.

Hisaaki Yamaba

He received the B.S. and M.S. degrees
in Chemical Engineering from Tokyo
Institute of Technology, Japan, in 1988 and
1990, respectively, and the PhD degree in
Systems Engineering from University of
Miyazaki, Japan, in 2011. He is currently
an Assistant Professor with the Faculty
of Engineering, University of Miyazaki,
Japan. His research interests include net-

work security and user authentication. He is a member of SICE
and SCEJ.

Kentaro Aburada

He received the B.S., M.S., and PhD
Degrees in Computer Science and
System Engineering from the University
of Miyazaki, Japan, in 2003, 2005 and 2009,
respectively. He is currently an Associate
Professor with the Faculty of Engineering,
University of Miyazaki, Japan. His research
interests include computer network and

security. He is a member of IPSJ and IEICE.

Naonobu Okazaki
He received his B.S., M.S., and PhD
degrees in Electrical and Communication
Engineering from Tohoku University,
Japan, in 1986, 1988 and 1992, respec-
tively. He joined the Information
Technology Research and Development
Center, Mitsubishi Electric Corporation
in 1991. He is currently a Professor with
the Faculty of Engineering, University of
Miyazaki since 2002. His research interests

include mobile network and network security. He is a member
of IPSJ, IEICE and IEEE.

