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1.  INTRODUCTION

Micro-precision glass insulated terminals are widely used in 
high-precision electronic equipment in the aerospace field. The 
performance of the glass terminal has a huge impact on the oper-
ation of the equipment. If there is no strict inspection for defects 
before using glass terminals, it will cause huge safety hazards to the 
reliability of high-precision electronic equipment, bringing about 
serious losses and consequences [1].

Due to the limitation of production level and detection meth-
ods, some produced glass terminals have defects such as missing 
blocks, pores, and cracks. The difficulties in defect detection are 
mainly three points: (1) The complex imaging background of the 
defects contains a variety of interference noise; (2) The shape, size, 
and location of defects are diverse; (3) Due to the different loca-
tions, sizes and shapes of missing blocks or pore defects, various 
defects will show greater differences. Therefore, this paper pro-
poses to use deep learning technology to detect missing blocks 
[2]. Due to the small number of samples, the Deep Convolution 
Generative Adversarial Networks (DCGAN) algorithm is used for 
sample expansion [3] before training. In this paper, the original 
Faster Region-based CNN (Faster R-CNN) model is improved, 
and Distance Intersection over Union (DIOU) is used in the 
Region Proposal Network (RPN) network instead of the original 
Intersection over Union (IOU) to solve the special problem. In the 
case of the constant IOU value, in the process of minimizing the 
distance from the center point of the bounding box, the bound-
ing box can converge faster. The improved Faster R-CNN model is 
used to detect the missing block defects of the glass terminal, and 

the detection results are compared with the most common models 
[including Single Shot MultiBox Detector (SSD), YOLOv3 and the 
original Faster R-CNN]. The experimental results show that the 
improved the Faster R-CNN model has higher detection accuracy.

2.  IMAGE ACQUISITION AND ANNOTATION

2.1.  Image Acquisition

The equipment used for image acquisition and photography is the 
CCD 540TVL (High Resolution B/W Black and White Camera) 
carried by the MVP400CNC automatic image measuring instru-
ment; the working distance is 86 mm; The glass terminal image 
shooting method adopts the vertical shooting mode of the eight-
zone light source; the collection condition is strong light; the mag-
nification during shooting is 1.0 * 30.77.

2.2.  Data Annotation

Figure 1 is a schematic diagram of the missing block defect of the 
glass terminal. This article uses labelImg software for labeling. 
After labeling, an XML file will be generated, which can be used for 
Faster R-CNN [4] training.

The labelImg labeled glass terminal is shown in Figure 2. The XML 
file saves information such as the name of the annotated picture 
and the annotation frame. The coordinates of the annotation frame 
are based on the upper left corner of the glass terminal image as 
the origin, and the right and lower sides of the origin represent the 
positive x- and y-axis directions respectively.
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A B S T R AC T
Micro-precision Glass Insulated Terminals (referred to as glass terminals) are the core components used in precision electronic 
equipment and are often used for electrical connections between modules. As a glass terminal, its quality has a great influence 
on the performance of precision electronic equipment. Due to the limitations of materials and production processes, some of the 
glass terminals produced have defects, such as missing blocks, pores and cracks. At present, most of the defect detection of glass 
terminals is done by manual inspection, and rapid detection easily causes eye fatigue, so it is difficult to ensure product quality 
and production efficiency. The traditional defect detection technology is difficult to effectively detect the very different defects 
of the glass terminal. Therefore, this paper proposes to use deep learning technology to detect missing blocks. First, preprocess 
the sample pictures of the missing block defects of the glass terminal, and then train the improved Faster Region-CNN deep 
learning network for defect detection. According to the test results, the accuracy of the algorithm in detecting missing defects in 
the glass terminal is as high as 93.52%.
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3.  FASTER R-CNN ALGORITHM

3.1.  Feature Extraction Network

The feature extraction [5] network used in this article is ResNet50, 
and its structure is mainly composed of Conv Block and Identity 
Block [6,7]. Among them, the Conv Block cannot be directly con-
nected to the network. Its main function is to change the dimension 
of the network, and the dimensions of the input and output results 
are different. The identity block can be connected to the network, 
and its main function is to deepen the network depth, and the input 
and output results have the same dimensions.

ResNet50 is mainly composed of residual blocks. Its structure is 
shown in Figure 3. First, it performs a convolution operation with 
64 convolution kernels of size 7 * 7 and step size of 2, and then per-
forms a maximum pooling with a pooling kernel size of 3 * 3 Then, 
after going through 3, 4, 6, and 3 residual blocks, respectively, 1 * 1 
and 3 * 3 represent the size of the convolution kernel of the residual 
block, and 64, 256 and so on represent the number of convolution 
kernels, respectively.

3.2.  Region Proposal Network

Region proposal network is the region generation network. By using 
d n * n window sliding on the shared feature map extracted by the 
feature extraction network [8], it is mapped into a d-dimensional  
feature vector, and k anchors are generated on each pixel. These 
anchors perform the regression and classification operations of 
the prior box respectively. Assuming that there are k anchors for 
each pixel on the shared feature map, it is necessary to predict 
these k pixels, and the classification operation can get 2k outputs, 
indicates whether the k area contains the target. The regression  

operation refers to the calculation of continuously approaching the 
label frame with k anchors. This operation can get 4k outputs. The 
k anchors get the center point coordinates and width and height 
information of the suggested frame (x, y, w, h), the process of get-
ting the suggestion box from anchor is also called anchor parame-
terization. Taking a pixel of the current shared feature map as the 
center, k anchors with different aspect ratios and sizes are gener-
ated, and their aspect ratios and sizes are represented by ratio and 
scale, respectively. For a feature vector of size w * h, there are a total 
of w * h * k anchors. The structure of the RPN network is shown 
in Figure 4.

3.3.  RPN Loss Function

The overall loss function of RPN is

L p p
N

L p p
N
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cls
cls
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where i represents the index of the anchor, pi and pi
* respectively 

indicate that the i-th anchor contains the target predicted value 
and the anchor tag value. When the i-th anchor contains the target, 

Figure 2 | LabelImg marking glass terminal and missing block defects.

Figure 3 | ResNet50 network structure.

Figure 4 | RPN network structure.

Figure 1 | Picture of missing block defect.
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pi
* = 1, and pi

* = 0 in other cases. ti and ti
* respectively represent 

the position and scale information of the suggestion box and the 
label box, Lcls represents the classification loss, that is, the log loss 
of the anchor corresponding to the target category, and Lreg is the 
regression loss, that is, the loss of the suggestion box obtained from 
the candidate box, definition for

		  L t t R t ti i i ireg ( , () )* *� �  � (2)

where R is the robust loss function (SL1), that is, using Smooth_L1 
to calculate the loss value.

It can be seen from pi
* Lreg that the regression loss can be calculated 

when pi
* = 1, and there is no regression loss in other cases. Among 

them, Ncls represents the selection of Ncls anchors for RPN train-
ing, Nreg represents the shape of the shared feature map, and l is 
equivalent to a scale factor, so that the weights of the classification 
loss and the regression loss are basically the same (generally l = 
Nreg/Ncls ≈ 10).

The regression process uses four coordinates:
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where x, y, w, and h respectively refer to the center coordinates, 
width, and height of the a priori box. The variables x, xa, and x* 
respectively refer to the x coordinates of the suggestion box, anchor 
a priori box, and label box (the same applies to y, w, and h).

In the RPN network, the obtained prediction frames need to be 
screened. This process uses DIOU and non-maximum suppression 
methods. The following is an analysis of these two methods.

3.4.  Distance Intersection Over Union

Intersection over union is the ratio of the overlap area of the label 
box and the prediction box to the intersection area of the label 
box and the prediction box, as shown in Figure 5. Assume that the 
red box is the missing block defect marked on the glass terminal, 
the area is S1, and the yellow box is the missing block defect pre-
dicted at the end of the glass terminal, and the area is S2, and the 
area of the overlapping part of the label frame and the prediction  
frame is S3.

For this image, the calculation of the IOU of the yellow prediction 
frame is shown in Equation (7).

		  IOU =
+ −

S
S S S

3
1 2 3

�  (7)

Since there are a total of 38 * 38 * 9 anchors in the shared fea-
ture map part, there may be many prediction boxes with a higher 
degree of coincidence for each label box, and the best one should be 

selected from this higher degree of coincidence prediction boxes. 
For the prediction frame of, it is necessary to use IOU as one of the 
criteria for non-maximum suppression.

However, IOU has an obvious shortcoming. When the predic-
tion box and the real box are in a containment relationship and a 
separation relationship, the IOU cannot clearly indicate the spe-
cific positional relationship of the two boxes, because the value of  
formula (7) will not change at this time. This article changes the 
IOU used in the original model to DIOU. DIOU introduces the 
distance between the center points of the two boxes and the outer 
bounding box, which solves the problem of the constant IOU 
value under special circumstances. In the process of minimizing 
the distance between the center points of the bounding box, it can 
make the bounding box converge faster. The DIOU loss diagram 
is shown in Figure 6, where the green and red boxes represent the 
target boxes, the yellow boxes represent the prediction boxes, and 
the blue dashed box represents the smallest box covering the two 
bounding boxes.

The calculation formula of DIOU is shown in formula 8.

		  DIOU IOU= − d
c

2

2 �  (8)

where d represents the distance between the center point of the 
predicted frame and the label frame, and c represents the diagonal 
distance of the outer frame.

3.5.  Non-maximum Suppression

Non-maximum suppression refers to removing redundant pre-
diction boxes in the picture. Each labeled box in the picture may 
have multiple prediction boxes, as shown in Figure 7a. These pre-
diction boxes intersect with the labeled boxes and have a higher 
prediction score. The threshold is set, but too many prediction 

Figure 5 | IOU prediction box and label box.

Figure 6 | DIOU schematic.
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frames will cause redundancy, so it is necessary to perform non- 
maximum suppression to eliminate redundant prediction frames 
in the picture.

Non-maximum value suppression sort the prediction scores of the 
missing block prediction boxes, find the box with the highest score, 
and then calculate the remaining prediction boxes and the DIOU 
with the highest score. If the DIOU is greater than the set threshold, 
the box will be removed. If there are multiple labeled boxes, then 
continue the non-maximum value suppression operation. Figure 7b  
shows the result of non-maximum suppression of missing block 
defects.

3.6.  ROI Pooling

Its main function is to merge the shared feature map and the Region 
of Interest (ROI) extracted through RPN, and then divide the pre-
diction frame into a set number of grids, and pool each grid, which 
is equivalent to the prediction boxes of different sizes in the shared 
feature map are pooled into feature maps of the same size, which 
is convenient for inputting subsequent networks for classification 
and regression.

As shown in Figure 8, the size of the prediction box output by the 
RPN is fixed to pool_w and pool_h (where pool_w and pool_h are 
both 7), which is equivalent to dividing it into 7 * 7 grids, that is, to 
achieve a fixed length output.

3.7.  Classification Network

The fully connected layer and the activation function are mainly 
used to judge and return the object category in the prediction 
frame to obtain a more accurate prediction frame, and its structure 
is shown in Figure 9.

3.8.  Loss Function of Faster R-CNN

Faster R-CNN combines the loss functions of the classification 
model and the regression model, and a calculation formula can be 
used to calculate the overall loss of the network. The loss function 
expression after the network is merged is shown in Equation (9).

	 L p u t v L p u u L t vu u( , , , ) ( , ) ( ) ( , )= + ≥cls locl 1 �  (9)

where p represents the probability that the corresponding 
anchor output is a certain category, u is the actual category label  

corresponding to the anchor, t u represents the regression of the 
candidate frame to the scale factor corresponding to the predicted 
frame, and v is the transformation parameter vector of the candi-
date frame regression.

		      L p u pucls( , ) log� � �  (10)

where Lcls(p, u) represents the classification loss, which is defined as 
the formula (10), and the log base is e.

	 L t v i x y w h s t vu
L i

u
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where Lloc(tu, v) represents the loss function of the prediction box 
obtained by regression of the candidate box, and SL1 represents the 
Smooth_L1 loss function.

3.9.  Workflow of Faster R-CNN Algorithm

Faster R-CNN first uses the feature extraction network to extract 
the shared feature map [9] of the glass terminal image. This shared 
feature map will be used in both RPN and ROI Pooling. Then, the 
RPN calculation is used to generate the suggestion box that exists 
in the shared feature map and make recommendations in ROI 
Pooling. The size of the frame is fixed, and the fixed feature map 
is sent to the subsequent network to obtain the target category and 
more accurate prediction frame information.

4.  EXPERIMENTAL RESULTS

To highlight the superiority of the application of the improved 
Faster R-CNN method in glass terminal defect detection, it is also 
compared with the detection accuracy of YOLOv3, SSD and the 
original Faster R-CNN algorithm. The detection accuracy of the 

Figure 8 | ROI pooling working diagram.

Figure 9 | Classification network structure diagram.

Figure 7 | Non-maximum suppression operation. (a) No non-maximum 
suppression. (b) Non-maximum suppression results.
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four algorithms is shown in Table 1. Some of their test results are 
shown in Figure 10.

From the table, we can see that the result of using the YOLOv3 
algorithm to detect missing blocks is not ideal, and the accuracy is 
only about 70%.

SSD is also a common method for small target detection. Using 
SSD algorithm to detect three kinds of defects at the same time, the 
comprehensive accuracy rate can reach about 88%.

Compared with the other two methods, Faster R-CNN has higher 
detection accuracy for missing block defects. The accuracy of the 
original Faster R-CNN model is about 91.59%. The accuracy of 
the missing block detection of the improved model has been sig-
nificantly improved, reaching 93.52%. The data in Table 1 shows 
that the improved Faster R-CNN model is superior in small target 
detection and has higher accuracy. And, as the number of training 
rounds increases, there is still room for improvement in accuracy.

5.  CONCLUSION

With the proposal of “Made in China 2025”, industrial production 
has higher and higher requirements for digitization, networking, 
and intelligence. Product quality inspection is the eye of industrial 
production and can drive the intelligent development of industrial 
production.

This paper analyzes the principle of the Faster R-CNN model 
and improves it. The original IOU is changed to DIOU, and the 
improved model is used for glass terminal defect detection. The 
inspection process does not require manual feature extraction, but 
based on the glass terminal sample learn features to identify defect 
locations and perform calibration. With the expansion of the data 
set and the improvement of the model, there is still much room for 
improvement in the accuracy of defect detection.
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