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1.  INTRODUCTION

In Japan, typhoons often approach and pass from July to September 
every year because of the effects of westerly winds and high atmo-
spheric pressures. Landslide disasters frequently occur due to heavy 
rains caused by typhoons, which leads to major accidents related to 
transportation and human life. Until now, observation of the disas-
ter areas, e.g., landslides, has been mainly conducted by aircraft [1]. 
However, in recent years, remote sensing using satellite images has 
attracted attention as a method for observing a wide area [2]. In sat-
ellite remote sensing, a sensor is mounted on an artificial satellite to 
observe the ground surface of the earth, and the obtained image is 
analyzed. Therefore, we can see the damages without going directly to 
the disaster areas. Typical satellite images include optical images that 
are obtained from sunlight reflection, and Synthetic Aperture Radar 
(SAR) images that are obtained by sensors that emit microwaves to the 
ground surface. It is easy for human eyes to interpret optical images, 
but they cannot be observed at night or in bad weather. On the other 
hand, SAR can observe the surface of the earth regardless of time and 
weather; thus, SAR images are useful for rapid rescue activities at night 
and in bad weather conditions. However, it is difficult for human eyes 
to interpret SAR images, unlike optical images. Therefore, many 
methods that analyze SAR images have been proposed to detect disas-
ter areas rapidly [3,4], and machine learning techniques, especially 
deep learning, have also been applied to landslide area detection [5].

When deep learning is applied to disaster area detection, a large 
number of training samples are necessary. However, shooting 

conditions of SAR images are different time by time, e.g., seasons, 
and it is also difficult to obtain a sufficient number of training sam-
ples with annotation (correct class labels) immediately after a disaster 
occurs. To overcome this problem, we propose an anomaly detec-
tion system that detects abnormal images that deviate from normal 
images. The proposed method uses only normal images for the train-
ing without using abnormal (disaster) images. Normal images are rel-
atively easy to obtain compared with abnormal images; thus anomaly 
detection is useful in a practical situation of disaster area detection. 
The proposed method consists of a feature extraction part and a 
detection part. The feature extraction is realized by Convolutional 
Adversarial Autoencoder (CAAE) [6,7] and Principal Component 
Analysis (PCA). CAAE is an extension of Adversarial Autoencoder 
(AAE) [8], where the layers of AAE are replaced with convolution 
and deconvolution layers. CAAE is trained with unsupervised learn-
ing; thus the cost of the annotation is not necessary. The detection 
part is realized by One-Class Support Vector Machine (OCSVM) 
[9–11] that detects outliers that deviate from the normal region.

This paper is organized as follows. In Section 2, the mechanism and 
features of SAR are introduced. In Section 3, the proposed method 
that combines CAAE, PCA, and OCSVM is explained. In Section 4,  
the experimental conditions and results are described. Finally, 
Section 5 is devoted to conclusion.

2.  SYNTHETIC APERTURE RADAR

Synthetic aperture radar is an active image radar that synthesizes 
small antennas mounted on a platform, such as an aircraft or satellite, 
to realize large virtual antennas and generates high-resolution radar 
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images [12–14]. Because SAR is an active sensor that emits micro-
waves, it is possible to observe the surface of the earth regardless 
of the presence or absence of sunlight and clouds. SAR images are 
applied to the research fields of agriculture, disaster, oceans, earth 
science, and so on [15,16]. SAR emits microwaves and receives the 
reflected microwaves from the ground surface (Figure 1). When a 
microwave emitted from the SAR antenna enters a conductor or 
dielectric, a current is induced, and the microwave is reemitted 
from the induced current. This is called scattering and scattering in 
the opposite direction of the incident wave is called backscattering. 
Because backscattering is the diffuse reflection caused by scatter-
ing, backscattering is different from specular reflection.

Synthetic aperture radar receives the backscattering and executes 
image reproduction. The scattering intensity of the microwaves 
strongly depends on the frequency, wavelength, and electric char-
acteristics (dielectric constant, etc.) of the scatterer. Therefore, for 
example, seawater or cars made of metal strongly reflect micro-
waves because a current is easily induced. On the other hand, 
sand and trees have low reflectivity because hardly any current is 
induced. In each pixel of SAR images, the intensity of the received 
microwave is recorded. A SAR image used in this paper was taken 
by Advanced Land Observing Satellite No. 2 (ALOS-2). ALOS-2 
is used in a variety of fields such as disaster monitoring, observa-
tion of forest distribution, and crustal movement measurement. 
In particular, ALOS-2 can detect changes in the distance from the 
satellite to the ground of the earth with an accuracy of centimeters, 
which contributes to detailed understandings of earthquakes, vol-
canic activities, and heavy rains. The main purpose of ALOS-2 is to 
ensure the safety of our daily lives and to solve global environmen-
tal problems [17].

3.  MATERIALS AND METHODS

3.1.  Dataset

A SAR image used in this paper is shown in Figure 2. It shows 
the northern Kyushu area in Japan on July 7, 2017, where large-
scale landslides, due to the torrential rain from July 5 to 6, 2017, 
occurred in this area. The red areas in Figure 2 shows the locations 
of the landslide that were annotated based on the information pro-
vided by the Geospatial Information Authority of Japan [18]. The 
size of the image is 6648 × 4360 [pixels] and the resolution per pixel 
is about 3 m2.

Figure 1 | Microwave emission, scattering, and backscattering of SAR [14].

Figure 2 | SAR image and landslide areas (red areas).

Figure 3 | Examples of 128 × 128 [pixels] ROI images.

Figure 4 | ROI and a target area for detection.

In this paper, Region of Interest (ROI)-based anomaly detection 
was carried out, that is, we first divided the whole SAR image into 
128 × 128 [pixels] ROI images. Figure 3 shows examples of normal 
and abnormal ROI images. Note that the target area for the detec-
tion of normal and abnormal is the central 32 × 32 [pixels] area of 
each ROI as shown in Figure 4. The surrounding area of the target 
area is used as a piece of supporting information (context) for the 
detection. The ROI images were split into training data including 
normal only, testing data of normal, and testing data of abnormal.

3.2.  Method

The overview of the anomaly detection model designed in this paper 
is shown in Figure 5. The feature extraction from SAR images are 
realized by CAAE that transforms input image x to feature vector z. 
Then, z is transformed to z¢ by PCA for dimensionality reduction, 
and finally OCSVM classifies z¢ as normal or abnormal.

3.2.1. � Feature extraction using convolutional 
adversarial autoencoder

In this paper, the extended model of AAE, named CAAE, is used 
for the feature extraction. Figure 6 shows the detailed structure of 
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CAAE that extracts feature vectors from ROI images. The upper 
part of Figure 6 is a CAE that contains an encoder and a decoder. 
The encoder outputs a 128-dimensional feature vector z, and the 
decoder outputs a reconstructed ROI image. The encoder con-
sists of some Block1 and fully-connected layers, where a Block1 
contains convolution and max-pooling layers along with batch 
normalization [19] and Rectified Linear Unit (ReLU) [20]. The 
decoder consists of some Block2, fully-connected and deconvolu-
tion layers, where a Block2 contains a deconvolution layer along 
with batch normalization and ReLU. The loss function (LOSS1 in 
Figure 6) is the mean squared error between the input and output 
images, and the weights of the encoder and decoder are updated 
by error backpropagation with Adam [21] to minimize LOSS1. As 
the learning of minimizing LOSS1 proceeds, the images generated 
by the decoder gradually match the input images and feature z can 
contain important information that is necessary to reconstruct the 
input images. The encoder and discriminator at the lower part of 
Figure 6 are adversarial networks, where the discriminator dis-
tinguishes vectors generated by Gaussian distribution (regarded 
as positive or real samples) zr from feature vector z inputted from 
the encoder (regarded as negative or fake samples). The loss func-
tion (LOSS2 in Figure 6) is the softmax cross-entropy based on the 
positive and negative probabilities outputted by the discriminator. 
The discriminator updates the weights to minimize LOSS2, while 
the encoder updates the weights to maximize LOSS2. Here, we 
explain the meaning of learning with LOSS2. Maximizing LOSS2 
means that the encoder aims to cheat the discriminator so that the 

Figure 5 | Overview of the proposed method.

Figure 6 | The detailed structure of CAAE.

discriminator misclassifies the negative samples as positive sam-
ples. On the other hand, minimizing LOSS2 means that the dis-
criminator aims to correctly classify positive and negative samples. 
As a result of the above adversarial learning, the distribution of fea-
ture vector z gradually follows Gaussian distribution. This adver-
sarial learning is a kind of regularization to avoid overfitting by 
imposing a constraint on the feature distribution.

3.3. � Dimensionality Reduction by PCA 
and Anomaly Detection by One-Class 
Support Vector Machine

The feature vector z generated by CAAE is transformed to z¢ by 
PCA. PCA executes a linear mapping of feature vectors to a low- 
dimensional space, where the variance of the vectors in the low- 
dimensional space is maximized. In this paper, 128 dimensions of z 
are reduced to 40 dimensions by applying PCA. Then, z¢ is inputted 
to OCSVM. SVM is originally a supervised-learning-based classi-
fication algorithm for two classes, which needs training data with 
class labels. OCSVM needs only one-class data for the training, 
where it generates areas of the trained class in the feature space. 
After the training, OCSVM regards the data that deviates from the 
areas of the trained class as outliers, i.e., abnormal. OCSVM has a 
parameter ν that determines the proportion of normal and abnor-
mal areas. For example, when ν is set at a large value as shown in 
Figure 7 (left), the normal area becomes small. In this case, only the 
data that is very near to the center of the normal area is regarded 

Figure 7 | Effects of ν in OCSVM.
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as normal, which increases the sensitivity of abnormal but may 
increase false positives, in other words, the true negative (normal) 
is misclassified as positive (abnormal). Conversely, when ν is small, 
the normal area becomes large, which increases the specificity, 
but may increase false negatives, in other words, the true positive 
(abnormal) is regarded as negative (normal). Therefore, the value of 
ν should be determined carefully considering the trade-off between 
false positive and false negative.

4.  EXPERIMENTS

4.1.  Condition 1

The class labels of ROIs were given by the following rule. When 
60% or more area of the central 32 × 32 area of each ROI con-
tains the abnormal area, it is regarded as abnormal, otherwise, 
normal. The number of training data (normal only), that of testing 
data (normal), and that of testing data (abnormal) are shown in  
Table 1. CAAE was trained on the training data and all the training 
data were encoded as feature vectors. Then, PCA was applied to the 
feature vectors to reduce the number of dimensions from 128 to 
40. The feature vectors after the dimensionality reduction are used 
to train OCSVM. Finally, the testing images encoded and trans-
formed by the trained CAAE and PCA were classified as normal or 
abnormal by OCSVM.

Table 2 shows accuracy, sensitivity, specificity, and precision 
obtained by the combination of CAE, PCA, and OCSVM (called 
the conventional method), and Table 3 shows those obtained by 
the combination of CAAE, PCA, and OCSVM (called the proposed 

Table 1 | The numbers of ROI images in condition 1

Training/Testing The number of images

Training (normal only) 13,542
Testing (normal) 164
Testing (abnormal) 164

Table 2 | Results obtained by CAE + PCA + OCSVM (Conventional 
method) in condition 1

ν

0.2 0.3 0.4 0.5 0.6 0.7

Evaluation 
metric (%)

Accuracy 53.4 54.9 55.6 55.7 49.4 47.4
Sensitivity 23.4 32.1 41.1 51.1 56.1 63.8
Specificity 83.4 77.8 70.1 60.3 42.7 31.1
Precision 58.5 59.1 57.9 56.3 49.5 48.1

method). The best accuracy obtained by the conventional method 
is 55.7% (ν = 0.5) and that obtained by the proposed method is 
57.9% (ν = 0.4). Therefore, we can see that CAAE is better than 
CAE as a feature extraction method; however, there is a large 
room for improvement on the accuracy. Regarding the sensitivity, 
specificity, and precision, the conventional method shows higher 
sensitivity than the proposed method when ν is large, while the 
proposed method shows higher specificity. Although the conven-
tional method can find more abnormal data than the proposed 
method, the precision of the proposed method for all the settings 
of ν is better than the conventional method. Therefore, we can say 
that the proposed method makes positive predictions when it has 
high confidence, which results in smaller false positives.

4.2.  Condition 2

In condition 2, the class labels of ROIs were given by the following 
rule. The rule of abnormal areas is the same as condition 1, that is, 
when 60% or more area of each ROI contains abnormal, it is regarded 
as abnormal. In the case of the labeling of normal, ROIs without con-
taining any abnormal areas are regarded as normal. In condition 1, 
the threshold that separates the normal and abnormal ROIs was 60%, 
which means that even if the ROIs contain 59% abnormal areas, they 
should be classified as normal. To clearly separate the features of 
normal and abnormal, condition 2 adopted the above labeling rule. 
Table 4 shows the numbers of training and testing data. The procedure 
of executing CAAE, PCA, and OCSVM is the same as condition 1.

Table 5 shows the accuracy, sensitivity, specificity, and precision of 
the conventional method and Table 6 shows those of the proposed 
method. The best accuracy obtained by the conventional method 
is 61.4% (ν = 0.2) and that obtained by the proposed method is 
66.0% (ν = 0.5); thus we can see that the accuracy becomes better 
than condition 1 and also the accuracy obtained by the proposed 
method is better than that by the conventional method. There is 
a similar tendency in the sensitivity, specificity, and precision as 
in condition 1. That is, the sensitivity of the conventional method 
is higher than the proposed method, while the proposed method 
shows higher specificity and precision. Therefore, the reliability of 
the positive prediction of the proposed method is better than the 

Table 3 | Results obtained by CAAE + PCA + OCSVM (Proposed 
method) in condition 1

ν

0.2 0.3 0.4 0.5 0.6 0.7

Evaluation 
metric (%)

Accuracy 55.9 56.6 57.9 57.4 54.4 52.4
Sensitivity 24.5 31.5 37.1 39.4 41.9 47.2
Specificity 87.3 81.6 78.7 75.4 66.9 57.6
Precision 65.9 63.1 63.5 61.6 55.9 52.7

Table 4 | The numbers of ROI images in condition 2

Training/Testing The number of images

Training (normal only) 7967
Testing (normal) 164
Testing (abnormal) 164

Table 5 | Result obtained by CAE + PCA + OCSVM (Conventional 
method) in condition 2

ν

0.2 0.3 0.4 0.5 0.6 0.7

Evaluation 
metric (%)

Accuracy 61.4 60.4 61.2 59.8 58.7 56.2
Sensitivity 39.5 47.7 56.6 64.3 68.1 73.3
Specificity 83.3 73.1 65.8 55.5 49.3 39.1
Precision 70.3 63.9 62.3 59.1 57.3 54.6
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conventional method. However, we should improve the sensitivity 
in the future work to find the abnormal areas as many as possible.

5.  CONCLUSION

In this paper, we proposed an anomaly detection method to clas-
sify normal (non-disaster) areas and abnormal (disaster/land-
slide) areas, where the proposed method consists of CAAE, PCA, 
and OCSVM. In the experiments, we evaluated the detection per-
formance in the two conditions. From the results, it was clarified 
that CAAE is better than CAE as a feature extraction method. 
The remaining problem is the classification of ROI images that 
contain small abnormal areas. Since it is difficult to make a sharp 
boundary between normal and abnormal, other methods such 
as segmentation models would be useful. Also, the proposed 
method should be evaluated using other SAR images to confirm 
the detection ability.
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