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1.  INTRODUCTION

For diseases that affect brain function, such as strokes, immediate 
treatment with medication and surgery is important, but post-onset 
rehabilitation also plays a critical role in the wellbeing of patients.

One of the techniques used for non-invasive brain function eval-
uation is Magnetoencephalography (MEG) [1,2]. MEG has high 
temporal resolution as well as high spatial resolution, and it is com-
monly used clinically for epilepsy diagnosis and rehabilitation [3].

In the past, electroencephalography was often used for the real time 
feedback system [4,5]. Real-time feedback system using MEG has 
been reported in the field of Brain–Machine Interface [6]. However, 
rehabilitation of the real time feedback system using MEG has not 
been established.

However, without the ability to monitor a patient’s relevant brain 
activity in real time during rehabilitative exercises, the most effi-
cient rehabilitation cannot occur.

The purpose of this study was to evaluate the use of Spatio-
Spectral Decomposition (SSD) of real-time MEG data during 
spontaneous movement [7–10]. Performance was evaluated by 
comparing SSD results to the results from a standard analysis tech-
nique, Independent Components Analysis (ICA). SSD completed  

decomposition faster than did ICA, with the SSD analysis com-
pleted about 270 times faster in the preliminary experiment. 
Because processing speed is critical to neurofeedback systems, we 
present our investigation of the SSD components and conclude 
with suggestions for feature selection.

2.  EXPERIMENT

The data were collected using a full-head 306-channel magnetoen-
cephalograph (Vectorview, Elekta-Neuromag, Helsinki, Finland) at 
a sampling frequency of 1000 [Hz]. To reduce power supply noise 
and other interference, measurements were taken inside a magnetic 
field shield room [1 (kHz) shielding rate 55.2 (dB)]. The partic-
ipant was a healthy person who attached an acceleration sensor 
to the middle finger of his left hand and performed self-initiated 
spontaneous flexion (i.e., bending) and extension (i.e., relaxing) 
movements of the indicated finger as shown in Figure 1 (hereinaf-
ter referred to as “the task”). The accelerometer data indicated the 
start and duration of flexion and extension.

3.  ANALYSIS METHOD

After collecting the raw MEG data from all 306 channels, we 
selected 26 gradiometers corresponding to the right Sensorimotor 
Cortex and performed ICA and SSD analyses [11,12], which each 
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A B S T R AC T
Neurofeedback systems have been found to be effective in the clinical rehabilitation of paralysis. However, most systems exist 
only for use with electroencephalography, which is cumbersome to apply to patients and has lower spatial resolution than 
Magnetoencephalography (MEG). Furthermore, the best practices for neural data feature extraction and feature selection are 
not well established. The inclusion of the best performing feature extraction algorithms is critical to the development of clinical 
neurofeedback systems. Using simultaneously collected MEG and accelerometer data before and during 10 spontaneous finger 
movements, we performed an in-depth comparison of the Spatio-Spectral Decomposition (SSD) algorithms for their individual 
abilities to isolate movement-relevant features in brain activity. Having restricted raw data to that from sensorimotor rhythm 
frequencies in select MEG sensors over sensorimotor cortex, we compared SSD components using: (1) 2D topographies, (2) 
activations over time, (3) and correlations with accelerometer data at both 0 and 60 ms time delays. We will discuss these results 
and suggestions for application to neurofeedback systems. In particular, we will present detailed visualizations of SSD results and 
discuss potential strategies and pitfalls for feature selection.
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identified components within the largest cited frequency band for 
Sensorimotor Rhythm (SMR) [13], 8–30 (Hz).

We performed SSD analysis from 40 to 100 s of data collection 
(the period of task performance). SSD extracted oscillations with 
optimized signal-noise ratio (SNR) by maximizing the power from  
8 to 30 Hz while simultaneously suppressing the flanking frequency 
bins. Then we performed a Morlet wavelet transform on the com-
ponents in order to examine frequency power over time. As seen 
in Figure 2, high amplitude artifactual data was recorded between  
40 and 50 s. To isolate SSD performance during non-artifact con-
taminated neural activity and to simplify our preliminary analyses, 
we restricted data analysis to the 20 s from 50 to 70 s. There were  
10 tasks completed at irregular intervals over this time period.

4.  RESULTS

Following the results of topography (Figure 3), we investigated the 
first, second, third, and 10th SSD components (ranked from high-
est to lowest eigenvalue).

The across-task averaged third and fourth SSD components had 
higher SMR band power immediately preceding the task. As shown 
in Figures 4–7, wavelet analysis was performed on task-locked 
averaged components, indicating average brain activity in the final 

Figure 1 | An example of finger extension (i.e., relaxing; left image) and 
flexion (i.e., bending; right image).

Figure 2 | The Morlet wavelet transform (5–40 Hz) of the first SSD 
component from 40 to 100 s.

Figure 3 | The 2D topographies of SSD components 1 through 10.

Figure 5 | The Morlet wavelet transform (5–40 Hz) of the task-averaged 
second SSD component.

Figure 4 | The Morlet wavelet transform (5–40 Hz) of the task-averaged 
first SSD component.
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second before flexion start. The red line in the figure is the flexion 
start point. The third (Figure 6) and 10th (Figure 7) components 
each showed a decrease in power around 10–25 Hz immediately 
following task execution (Black frame), and this decrease in power 
was followed by a subsequent increase in power from around  
10–15 Hz (Red frame).

As shown in Table 1, the third component had the highest correla-
tion with the accelerometer data, followed by the second and fourth 
components which had small but likely still relevant correlations 
with the accelerometer data.

5.  CONCLUSION

In this paper, we performed offline MEG data analysis during 
spontaneous flexion and extension of the middle finger of the left 
hand to investigate the use of SSD in an online, real-time MEG-
based neurofeedback system.

There are several key points to take away regarding the automation 
of feature selection in this context. As shown in Table 1, the third 
SSD component had the highest correlation with the accelerome-
ter data out of the first five components (i.e., the components with 
the strongest eigenvalues or largest SNRs), although this correla-
tion was still under 0.5. The wavelet analysis revealed Event-related 
Desynchronization (ERD) and Event-related Synchronization 
(ERS) in both the third (Figure 6) and 10th (Figure 7) SSD com-
ponents. Therefore, it is not possible to simply select the first SSD 
component or the first few SSD components and assume corre-
spondence with the task, nor is it possible to select relevant compo-
nents based solely on a high-threshold correlation with behavioral 
data. From previous study, we have also found that selection of the 
component with the highest SMR power is ineffective due to con-
tamination by muscular artifacts. This analysis leads us to conclude 
that domain-informed feature selection, in this case using ERD and 
ERS characteristics, should be the basis for the ideal neurofeed-
back system (i.e., a system that allows for maximum flexibility and 
change in brain activity during rehabilitation sessions).

Future work will involve analyzing the correlations between more 
of the SSD components (e.g., 6–10) and the accelerometer data at 
various delays. Furthermore, we will investigate the usefulness of 
baseline correction in component selection and of logarithmically 
scaled components as features in unsupervised learning.
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