
Research Article

Design of an Optimized GMV Controller Based  
on Data-Driven Approach

Liying Shi1,*, Zhe Guan2, Toru Yamamoto3

1Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, HigashiHiroshima 739-8527, Japan
2KOBELCO Construction Machinery Dream-Driven Co-Creation Research Center, Hiroshima University, 1-4-1 Kagamiyama,  
HigashiHiroshima 739-8527, Japan
3Graduate School of Advanced Science and Engineering, Hiroshima, 1-4-1 Kagamiyama, HigashiHiroshima 739-8527, Japan

1.  INTRODUCTION

Despite the new results in control theory that have been achieved 
by researchers year-by-year all over the world, the Proportional-
Integral Derivative (PID) controller [1] in all control design tech-
niques is the most popular controller used in the process industries. 
It has a long history in the automatic control field and can assure 
satisfactory performances with simple algorithm for a wide range 
of processes. The structure is very simple, and it is very easy to 
grasp the physical meaning of PID parameters. Therefore, over the 
last half-century, a great deal of academic and industrial effort has 
focused on defining PID parameters.

In recent years, some methods for calculating PID parameters have 
been proposed, but these methods are model-based and require 
system identification to calculate the PID parameters. However, it is 
hard to tune these parameters because most real systems generally 
have high-order lag factors and uncertainness. However, some data-
based methods have gradually been proposed. It does not require 
system identification to calculate PID parameters only through 
closed-loop data, which greatly reduces the calculation cost.

Among the existing control strategies, using the Minimum 
Variance (MV) as the benchmark can claim to be successful. The 
basic idea behind the MV index is to only consider the control-
ler error variance. However, few of the available techniques in use 

take the control effort or the manipulative variable activity into 
account. Then, the Generalized Minimum Variance (GMV) [2] 
is proposed, and it takes into account controller error variance 
as well as the manipulating variable variance, which can achieve 
model-free. In the existing GMV-PID controller [3], an adjustable 
parameter l (a weighting factor penalty on the manipulating vari-
able) is included, and the PID parameters are calculated by simply 
changing l manually. Therefore, it is hard to get desirable control 
performance.

To improve the control performance, the Nelder–Mead (NM) 
method [4] is introduced. The NM method is different from the 
simplex algorithm in linear programming. It does not use any deriv-
ative operation and the algorithm is relatively simple. It can opti-
mize the calculation of the most suitable parameter l. However, the 
objective function in NM method needs the output calculation. In 
other words, the model information is inevitably to obtain output. 
To achieve model-free design scheme, the estimation of closed-
loop response method is introduced in database-driven approach. 
Using obtained closed-loop data can predict the output and then 
substitute it into the objective function without any model infor-
mation of the process. The effectiveness of the proposed scheme is 
verified by the experiment of tank system.

The rest of this paper is organized as follows: the problem is for-
mulated in Section 2; the proposed scheme is the main topic in 
Sections 3 and 4; Section 5 provides the experiment and analysis, 
and Section 6 concludes the paper.
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2. � OVERVIEW OF THE DATA-DRIVEN  
GMV CONTROLLER

This paper gives the details of the proposed method which 
describes a design scheme for data-driven GMV-PID controller 
which can obtain GMV control parameters by applying the NM 
method and the estimation of closed-loop response based on PID 
controller. In Figure 1, an adjustable parameter l is included in the 
GMV-PID controller, therefore PID parameters are calculated by 
simply changing l. Using the method of estimation of closed-loop 
response to predict new output, then the application of NM method 
can optimize the calculation of the most suitable l according to the 
predict output and get optimal PID parameters without any model 
of the process.

3. � GENERALIZED MINIMUM  
VARIANCE CONTROL

3.1.  System Description

Consider the following system:

	   A z y t z B z u t
t

( ) ( ) ( ) ( )
( )- - -= +1 1 1 x
D �  (1) 

where A(z−1) and B(z−1) are given by the following polynomials:
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1

1
2
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where u(t) and y(t) are respectively the input and the correspond-
ing output; x(t) is the Gaussian white noise which has zero mean; 
z−1, the backshift operator which implies z−1 y(t) = y(t − 1); Δ, the 
differencing operator (Δ = 1 − z−1); and m, the order of B(z−1).

3.2.  Control Design

The GMV control law for the system (1) can be derived by mini-
mizing the following cost function:

		  J E t k= [ ( )].f 2 1+ + �  (4) 

Here, f(t + k + 1) is the generalized output given by following 
equation:

    f l w( ) ( ) ( ) ( ) ( ) ( )t k P z y t k u t P t+ + = + + + --1 1 11 D �  (5) 

where w (t) denotes the reference signal, k is the minimum time-lag 
which is estimated by an operator (k is set as 0 when the time-lag is 
unknown). In addition, l is the weight coefficient for the variance 
of the control input and it is set by a user arbitrarily. Next, the fol-
lowing Diophantine equation is introduced.
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Moreover, P(z−1) is the design polynomial and it is designed based 
on the following equation. Where, the order of E(z−1) and F(z−1) are 
set to decide these coefficients uniquely from ΔA(z−1) and P(z−1).
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s and c  are parameters which express the rise time and the damp-
ing property which are set by an operator respectively. Moreover, 
s denotes the rise time that the system output attains about 60% 
of the value of the step reference signal. From (1), (4) and (5), the 
predictive value of the generalized output after k + 1 at t can be 
obtained as following equation:
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Here, the optimum predictive value at t is defined by
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where,
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The control law is described as the following equation:
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To obtain an optimum predictive value f�( | )t k t+ + 1 , it is neces-
sary to compute E(z−1) and F(z−1). However, it needs system param-
eters to calculate these coefficients, therefore it has to do a system 
identification. The error between output and the optimum predic-
tive value is defined as

	 ∆e f f( ) ( ) ( )t k t k t k t+ + = + + − + +1 1 1� | �  (18) Figure 1 | The block diagram of data-driven GMV controller.
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The least-square method is applied to the obtained closed-loop 
data to minimize the square sum of these residual errors, then 
the parameters of G(z−1) and F(z−1) are identified without system 
parameters. The velocity type of PID control is given by the follow-
ing equation:

	 D D Du t K e t K y t K y tI P D( ) ( ) ( ) ( )= - - 2

�  (19) 

		  e t t y t( ) ( ) ( )= -w �  (20) 

KP, KI, and KD denotes the proportional gain, the integral gain 
and the derivative gain. By replacing the polynomial G(z−1) by the 
steady-state term G(1), the following equation can be obtained:
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Therefore, PID parameters can be calculated as follows:
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4. � EVOLUTIONARY COMPUTATION  
USING NELDER-MEAD METHOD

4.1.  Nelder–Mead Method

The Nelder–Mead method is briefly explained to calculate the 
user-specified parameter l. Each top of the triangle is determined 
as Si = li. In this paper, the objective function is determined by

		  H S y t y ti t

M

m i( ) ( ) ( )= −{ }=∑ 1

2
�  (25) 

where ym(t) denotes the reference model output and M denotes 
the evaluation horizon. yi(t) is the output corresponding to Si. The 
objective function can be determined. The top with the largest 
target function value H(Si), the second large top and the smallest 
top are respectively assumed to be SH, SM, and SL. Furthermore, the 
center between SM and SL is determined as SG. Four operations are 
briefly explained as follows:

•• Reflection

SR is determined as SR = (1 + b )SG − b SH, where b  is set as b > 0, 
and it corresponds to the ratio of distances SRSG and SHSG.

•• Expansion

SE is determined as SE = (1 − γ)SG + γSH, where γ is set as γ > 1,  
and it corresponds to the ratio of distances SESG and SRSG.

•• Contraction

SC is determined as SC = (1 − η)SG + ηSH, where η is set as 1 > η 
> 0, and it corresponds to the ratio of distances SCSG and SHSG.

•• Reduction

SH and SM are moved in the direction of SL.

The proposed control system can be designed by calculate the 
most suitable l by the steps based on the mentioned procedure. 
The proposed control system can be designed by calculating the 
most suitable l by the steps based on the mentioned procedure in 
Figures 2–6. The above algorithm can be summarized as follows:

Figure 3 | Expansion of the Nelder–Mead method.

Figure 4 | The contraction of the Nelder–Mead method.

Figure 5 | Reduction of the Nelder–Mead method.

Figure 2 | Reflection of the Nelder–Mead method.

Figure 6 | Procedure of the Nelder–Mead method.
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1.		  Construct the initial working simplex S.

2.		  Repeat the following steps until the termination test is satis-
fied. Calculate the termination test information.

3.		  If the termination test is not satisfied, then transform the 
working simplex.

4.		  Return the best vertex of the current simplex S and the associ-
ated function value.

4.2.  Estimation of Closed-Loop Response

To achieve model-free design scheme, the estimation of closed-loop 
response method [5] is introduced in data-driven approach. Using 
obtained closed-loop data can predict the output and then substi-
tute it into the objective function without any model information 
of the process. The estimation of closed-loop response method is 
used to predict the output using only the initial data without any 
model of the process.

The superposition principle is valid for input–output relations in 
Linear Time Invariant (LTI) systems. In this method, the response 
is predicted by describing the predicted input and output using 
the superposition of the input–output relations already obtained. 
First, we describe the prediction of the response of an arbitrary LTI 
system, and then we describe the prediction of the response of a 
closed-loop system composed of LTI systems. Response prediction 
for linear systems suppose that the input–output data pairs u0, y0 
(t = 0, 1, …, N − 1) of an arbitrary discrete-time LTI system G are 
obtained. The relationship between u0, y0 is given by:

			   y Gu0 0= �  (26) 

We consider predicting the response yd from u0, y0 when an arbi-
trary input ud given by the designer is applied to G. Where ud, yd  
(t = 0, 1, …, N − 1) satisfies the following equation.

		      y t Gu td d( ) ( )= �  (27) 

Since G is an LTI system, if u0, y0 and the different input-output 
relations u1, y1 are known, the following relations hold for any con-
stants k and i.

		  k i k iy y G u u0 1 0 1+ = +( ) �  (28) 

The relationship between both equation is commonly referred to 
as the superposition principle. When the data length N of ud and 
yd is large enough, it is difficult to determine k and i such that ud 
and yd are obtained from only two sets of input and output data. To 
adjust each time series, it is desirable to prepare N sets of input and 
output data. Therefore, it is desirable to prepare N pairs of input 
and output data to adjust each time series, so that u0 and y0 can be 
adjusted by k(k = 0, 1, 2, …, N − 1) of u0 and y0, respectively. They 
are then introduced in vector form as in equations.

	   u0 = ¼ -éë ùûu0 0 00 1 1( ) ( ) ( )u u N
T

�  (29) 
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T
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⁝

	 yN -1 = ¼ ¼ ¼éë ùû0 0 0 0y
T

�  (34) 

We also define the vectors ud and yd.

	   ud = ¼ -éë ùûu u u Nd d d

T
( ) ( ) ( )0 1 1 �  (35) 

	   yd = ¼ -éë ùûy y y Nd d d

T
( ) ( ) ( )0 1 1 �  (36) 

If u0(0) is non-zero, then the vectors uk and yk are linearly indepen-
dent for each k. Therefore, ud can be expressed using the coefficient 
vectors a and uk as in equation.

	 u a a ad N= + +¼+ -0 1 1 1u u uN0 1 - �  (37) 

		  a = ¼ -( )[ ]a a a N
T

0 1 1 �  (38) 

		  U u u u N
T= ¼ -( )[ ]0 1 1 �  (39) 

Here, U is regular if u0 is non-zero. Solving from the relationship, 
ud(0) = a0u0(0), ud(1) = a0u0(1) + a1u0(0), a, which corresponds to k 
and i, can be obtained sequentially and uniquely determined by the 
designer by giving ud. Using the coefficient spectrum k obtained 
in this way, yd can be obtained from the superposition principle as 
shown in next equation.

	     y a a ad N= + +¼+ -0 1 1y y y0 1 1N - �  (40) 

		  Y y y y N

T
= ¼éë ùû0 1 ( 1)-

�  (41) 

U and Y are described by the previously obtained input and output 
data u0, y0. Using the known data, the output yd of system G for any 
input ud can be predicted.

		    y YU ud d= -1 �  (42) 

In this paper, the pseudo reference signal is described as the follow-
ing equation:

	     r t C z u t y t�( ) ( ) ( ) ( )= +
- -1 1

0 0D
�  (43) 

where, u0 denotes the initial input and y0 denotes the initial output. 
The predicted output is determined as the following equation:

		    y td ( ) = -YR� 1v �  (44) 

where �R  denotes [r0 r1 … rN − 1], Y denotes [y0 y1 … yN − 1].

5.  EXPERIMENTAL EVALUATION

The proposed method is applied to a tank system which is shown 
in Figure 7. The schematic diagram of the process system is shown 
in Figure 8. In this system, there are three pipes. When the water 
is flowing along with the time, the temperatures at three points 
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mentioned above are measured and displayed in Temp.1, Temp.2 
and Temp.3. The temperature sensor in the tank system transmits 
the sensed water temperature signal to the controller. The con-
troller compares the measured water temperature signal with the 
set signal to obtain the deviation. Then according to the nature of 
the deviation, the hot water, cold water, and electric valve sends 
out “open” and “close” commands to ensure that the tank system 
reaches the set temperature. It should be noted that the cold water 
value is set as 10%.

TS is the sampling time and is set as TS = 5 s in this experiment. 
Then, the Ziegler-Nichols method [6] is applied considering the 
stability of the system when the parameters are identified. As a 
result of the step response, the system parameters are estimated 
and at the same time the PID parameters can be obtained by apply-
ing the Ziegler-Nichols method. The control result by the Ziegler-
Nichols method is shown in Figure 9, and the corresponding PID 
gains are shown as follows:

K K KP D= = =   4 3963 0 0925 8 2747. , . , .I

Firstly, using manually adjusted l to calculate the PID parameters. 
When l = 4.5, the control result is shown in Figure 10. PID gains 
are shown as follows:

K K KP D= = =   0 6275 0 0796 4 5127. , . , .I

calculated as 3.772 by the proposed scheme, and then the PID gains 
can be obtained as follows:

K K KP D= = =   2 7873 0 1896 10 2434. , . , .I

Figure 11 shows the control result when l = 3.772. In comparing 
the control results obtained by manually adjusting l and calculat-
ing l. It is clear that the PID parameters by using the calculated 
l can get desirable control performance, and it takes a short time 
to achieve the control effect. However, the control result by using 
manually adjusting l takes a relative long time to reach the target 
value.

Figure 7 | Photo of the temperature control system.

Figure 8 | Schematic diagram of the temperature control system.

Figure 9 | Control result by the Ziegler-Nichols method.

Figure 10 | Control result by using manually adjusted l (l = 4.5).

Figure 11 | Control result by the proposed method (l = 3.772).
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6.  CONCLUSION

In this paper, a design scheme of data-driven GMV-PID control-
ler has been proposed, which can obtain control parameters by 
applying the Nelder–Mead method based on PID controller. The 
features of the newly proposed control scheme are summarized 
as follows:

•• The user-specified parameter included in GMV-PID  
control system, is calculated by the NM method for a liner 
system.

•• Only using one-short data can calculate l. The estim- 
ation of closed-loop response is introduced in data-driven 
approach.

•• The effectiveness of the proposed scheme has been evaluated on 
the simulation example and experiment.

Furthermore, this system can only calculate linear systems, and 
future research will be devoted to the development of nonlinear 
systems.
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