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1. INTRODUCTION

Mathematical ecology has used the Lotoka–Volterra, i.e., LV equa-
tions which are the basic equation of the theory [1]. LV equations 
are differential equations with the predator as y and the prey as x, 
shown in Equations (1) and (2).

  
dx
dt

k x k xy= -1 2 ,   (1)

  dy
dt

k xy k y= -2 3 ,   (2)

The equilibrium point of the LV equation can be found as the point 
where the derivative of x and y is zero; as shown in Equations (3) 
and (4);

  0 1 2= = -
dx
dt

x k k y( ),   (3)

  0 2 3= = -
dy
dt

y k x k( ).   (4)

We obtain the equilibrium points,

( , ) ( , ), , .x y
k
k

k
k

=

















0 0 3

2

1

2

The positive and negative differential values of x or y around equi-
librium points give the behavior of the LV equations.

If y is more significant than k1/k2, x decreases, and if y is minor, it 
increases. On the other hand, if x is more prominent than k3/k2, 
y increases, and if it is smaller, y decreases. Therefore, x and y 
oscillate around the equilibrium point; the solution to these equa-
tions are periodic (Figure 1) [1].

1.1. Chemical Ecology

The LV equations do not include plants. Therefore, the LV equa-
tions can also describe carnivores–herbivores relationships other 
than herbivores and carnivores [2].

Since the late of 1980s, chemicals are essential to ecosystems. Animals, 
insects, and plants produce non-volatile chemicals and volatile chem-
icals such as proteins. Non-volatile chemicals are used, for example, 
for individual recognition between insects; personal credit is done 
by touching proteins on the body surface of the other insect with the 
antennae. On the other hand, Volatile chemicals are Terpenes pro-
duced by plants; the Terpenes are called Herbivores Induced Plant 
Volatile, HIPV [3,4]. Terpene is a hydrocarbon composed of iso-
prene, a biological substance produced by plants, insects, and fungi.

When a plant is attacked, the plant chemically analyzes the saliva 
of the attacker and identify it. A plant can identify multiple attack-
ers by its saliva. If the plant tells the attacker, it produces a vol-
atile chemical that attracts the attacker’s natural enemies. About 
three types of terpenes are used in the interaction between natural 
enemies and plants. Different blends of these terpenes are used to 
attract suitable natural enemies.

In the case plants suffer mechanical damage, they synthesize sali-
cylic acid to repair the damage. On the other hand, when attackers 
damage a plant, the plant switching synthesizing salicylic acid to 
terpenes.
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A B S T R AC T
Lotoka–Volterra, LV equations are to model predator–prey problem. In principle, the LV equations are belongs to a two-person 
system. Even if there are many-body, it is structurally in two-body, i.e., with three or more predators and a prey. On the other 
hand, chemical ecology has shown that plants damaged by predation produce information chemicals (Hervibore Induced Plant 
Volatile, HIPV) that attract natural enemies. Chemical ecology suggests that the ecosystem is a tri-trophic system consisting of 
predator–plant (HIPV)–prey. Therefore, chemical ecosystems are essentially different from LV equations. This paper proposes a 
basic equation for tri-trophic systems and investigates their stability.
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2. MODEL OF TRI-TROPHIC SYSTEM

2.1. Rule Dynamics

The group dynamics governing the elements can exist in a variety 
of forms. Among them, there are mutually independent dynamical 
rules that are fundamental. These basic dynamics rules are called 
rules, and the motion in the rule space is called rule dynamics [2]. 
In this paper, a rule rewrites a multiset of the alphabet; we denote 
a set of alphabets as AL. A multiset, Ms, is defined by a set and a 
pair of sup functions, <Ms, Sup>, where Sup is a function from 
the elements of the multiset to a natural number, including zero. 
For example, SupMs(a) gives the number of occurrences of an in Ms 
SupMs(a) = two means that Ms contains two a’s, while supMs(a) = 0 
means that Ms contains zero a’s. We denote a multiset explicitly as 
{a, a, b, b, b} = Msi; SupMsi(a) = 2, SupMSi(b) = 3 and SupMSi(c) = 0.  
A multiset rewriting rule is defined by a pair of multisets, <{l}, {r}>. 
If Ms, then the intersection of Ms and l is rewritten to r. If {l} ⊆ Ms 
then {l} is deleted and into {r} is included. For example, the set of 
rules of rule dynamical expression of LV equations are as follows:

<{ } { } >
<{ } { } >
<{ } { } >

a a a r
a b b b r
b r

, , ,
, , , ,
, ,

1
2
3Null

where Null stands for and empty multiset; r1 transform {a, a, b} to 
{a, a, a, b}, r2 rewrites it into {a, a, b, b} then r3, {a, a, b}.

The tri-trophic system in chemical ecology is composed of plants, 
herbivores, carnivores and HIPV; in the system, plants grow, and 
if a herbivore eats a plant, the plant generates HIPV, and the her-
bivore grows; if there is HIPV and herbivores, a carnivore will be 
attracted and get carnivores to increase population, and the plant 
stopped generating HIPV. In this scenario, we ignore the increasing 
population of herbivores and carnivores as the LV equations also 
ignore the process.

We will denote herbivore as h, carnivores as c and HIPV as d. Based 
on the scenario, a set of rules of a dynamical expression of the 
tri-trophic system are as follows.

< { } { } >
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3.  EQUATION OF THE TRI-TROPHIC 
SYSTEM

In the tri-trophic system in chemical ecology, HIPV is crucial; in 
the LV equations, carnivores can have herbivores as much as possi-
ble, while in the tri-tropihic chemical ecological system, carnivores 
cannot have herbivores if there is no HIPV. Before herbivores take 
plants, there is no HIPV, and it is processed in proportion to the 
number of plants eaten.

The LV equations cannot describe the tri-trophic chemical eco-
system conventionally. LV equations with multi-bodies have been 
proposed in Dimas Martins [5]. The n species is essentially in a 
biotrophic system [6–9]. And Sabelis et al. [10] proposed mathe-
matical models of tritrophic system with modified LV equations 
and game theory in two-species.

Since it is composed of multiple herbivores or carnivores, it can have 
many bodies interactions between biotrophic layers and cannot 
have interactions beyond these layers. Therefore, the generalized 
LV equations cannot essentially describe the chemical ecosystem.

3.1.  Transform Dynamical Rule Systems  
to Differential Equations

We regard the dynamical rule system as a jump Markov process, 
where every rule is a transition rule; we obtain transition rules of 
the procedure as r1:p→p,pr2:h,p→h,h,vr3:c,h,v→c,cr4:c→Null, 
respectively.

We give transition probabilities as

  
k p

k p k ph k chv k c
1

1 2 3 4+ + +
,   (5)

  
k ph

k p k ph k chv k c
2

1 2 3 4+ + +
,   (6)

  
k chv

k p k ph k chv k c
3

1 2 3 4+ + +
,   (7)

  k c
k p k ph k chv k c

4

1 2 3 4+ + +
.   (8)

Increments of each rule are (1, 0, 0, 0), (−1, 1, 0, 1), (0, −1, 1, –1) 
and (0, 0, −1, 0), respectively. Hence, we obtain expectation values 
of each rule, (5)–(8) gives (9);
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,   (9)

where ρ = k1p + k2ph + k3chv + k4c. If p, h, c are sufficiently large 
and the change in probability value due to variation of each value 
is negligible, the following deterministic equation (10)–(12) can be 
obtained;

  
d p

dt
k p k ph

á ñ
= -1 2 ,   (10)

Figure 1 | Dynamics of LV equation.
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  d h
dt

k ph k chv
á ñ

= -2 3 ,   (11)

  
d c
dt

k chv k c
á ñ

= -3 4 .   (12)

Note that this equation is a three bodies LV equation if we ignore v.

3.2.  The Behavior of Basic Equations of 
Chemical Ecosystems

To investigate the behaviors of the model, Equation (13) was 
embedded in Equation (14) to make it an approximate equations;

  
d x

dt
d v
dt

ax bxyv
á ñ á ñ

= = - ,   (13)

  d y
dt

bxyv cyá ñ
= - ,   (14)

where initial value of x, y > 0, v = 0 and no x, y and v are positive 
including zero. When v = 0, equilibrium point is (0, 0), v ≠ 0, (0, 0) 
and (c/bv, a/bv). Hence, dynamics of x and y become stable; when  

v = 0 or y < a/bv, dy/dt < 0, while y > a/bv, dy/dt > 0 and in case  
v = 0 or x < c/bv, dx/dt > 0, while x > c/bv, dx/dt > 0. (Figure 2). 

4. CONCLUSION

We proposed the equation of three species interactions. We 
showed that the equilibrium points of this equation are x and y 
at infinite points including 0. Note that we are considering a pos-
itive number including 0, because it is a model of an ecosystem.

In this experiment, the initial values of Herbivores were set 
to 10 and 100 in increments of 20, while the initial value of  
carnivores was set to 5. The behaviour of tri-trophic equation 
was stable at all initial values and did not change significantly 
(Figure 3). 

CONFLICTS OF INTEREST

The author declares no conflicts of interest.

REFERENCES

[1] A.J. Lotka, Elements of Physical Biology, Williams and Wilkins 
Company, Baltimore, 1925.

[2] Y. Aizawa, Y. Nagai, Bussei Kenkyu (Kyoto), Plant Signal. Behav. 
48 (1987), 316–320 [in Japanese].

[3] A.R. War, H.C. Sharma, M.G. Paulraj, M.Y. War, S. Ignacimuthu, 
Herbivore induced plant volatiles: their role in plant defense for 
pest management, Plant Signal. Behav. 6 (2011), 1973–1978.

[4] J. Takabayashi, M. Dicke, Herbivore-induced plant volatiles 
with multifunctional effects in ecosystems: a complex pattern 
of biotic interactions, in: T. Abe, S.A. Levin, M. Higashi (Eds.), 
Biodiversity, Springer, New York, NY, 1997.

[5] A. Dimas Martins, E. Gjini, Modeling competitive mixtures with 
the Lotka-Volterra framework for more complex fitness assess-
ment between strains, Front. Microbiol. 11 (2020), 572487.

[6] E.H. Kerner, Comment on Hamiltonian structures for the n- 
dimensional Lotka–Volterra equations, J. Math. Phys. 38 (1997), 
1218.

[7] E. Chauvet, J.E. Paullet, J.P. Previte, Z. Walls, A Lotka-Volterra 
three-species food chain, Math. Mag. 75 (2002), 243–255.

[8] Y. Takeuchi, Global dynamical properties of Lotka-Volterra sys-
tems, World Scientific, Singapore, 1996.

[9] G. Bunin, Ecological communities with Lotka-Volterra dynam-
ics, Phys. Rev. E 95 (2017), 042414.

[10] M.W. Sabelis, M. Van Baalen, B. Pels, M. Egas, A. Janssen, 
Evolution of exploitation and defense in tritrophic interactions, 
in: U. Dieckmann, J.A.J. Metz, M.W. Sabelis, K. Sigmund (Eds.), 
Adaptive Dynamics of Infectious Diseases: In Pursuit of Virulence 
Management, Cambridge University Press, Cambridge, 2002, pp. 
297–322.

Figure 2 | Phase diagram of tri-trophic equations.

Figure 3 | (Left) time developments of 10 species tri-trophic equation, 
(right) LV equation.
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