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1.  INTRODUCTION

Differential Wheeled Mobile Robots (DWMRs) are widely used 
in today’s society. There are many methods have been used in 
controller design for trajectory tracking. Sliding mode control 
[1], backstepping control [2], robust control [3], fuzzy control 
[4], active disturbance rejection control [5] etc. are used to solve 
tracking control problem. From a practical perspective, the input 
constraints must be considered when designing controller, but the 
current situation is that most of the research does not consider 
the mutual constraints relationship between the linear velocity 
v and the angular velocity w of the mobile robot, they usually 
assume that the input constraints of the robots’ linear velocity 
v and angular velocity w are mutually independently, that is,  
|v| ≤ m1, |w| ≤ m2, where m1 and m2 are positive constants. The 
real situation is that input field of DWMRs is the rhombic area 
defined by |v/m| + |wl/m| ≤ 1 as shown in Figure 1, and m rep-
resents the maximum velocity of two drive wheels, l represents 
half of the distance between the two drive wheels, the proof pro-
cess will be given later. If a differential wheeled mobile robot 
uses the controller designed in Su and Zheng [6], the rectangu-
lar area where v and w are independently needs to be obtained 
from the rhombic area mentioned above, it can be determined by  
|v| ≤ m/2 and |w| ≤ m/2l. So we can see that the actual area where 
v and w are mutually independently is only half of the hypotheti-
cal rectangular area. Also the mobility of DWMRs cannot be fully 
utilized. Rhombic input constraints are considered first time in 

Chen et al. [7], it proposed a geometric analysis method to design 
time-varying feedback parameters.

2.  PROBLEM STATEMENT

2.1.  Rhombic Input Constraints

As shown in Figure 2, vl and vr respectively represent the velocity of 
robot’s driving wheels, and their maximum velocity is m, that is vl ≤ m  
and vr ≤ m. Usually v and w  of DWMRs are used as control inputs, 
and their relationship with the velocity of the driving wheel is
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Thus v and w  are constrained by
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The above is collated into one expression:

Formula (3) can be sorted into one expression:

		  v m l m/ /+  w £ 1 �  (4) 

Formula (4) can be expressed as the solid black rhombus in  
Figure 1. So far, the independent rhombic area of v and w is 
obtained.
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2.2. � Tracking Control Based on Rhombic 
Input Constraints

The kinematics and dynamics equations of two-wheel differential 
mobile robots is

		  � � �x v y v= = =cos , sin ,q q q w    �  (5) 

(x, y) is the center point coordinates of DWMRs and q is used to 
indicate its azimuth angle (see Figure 2).

Assumption 1. The input constraint of DWMRs is Equation (4), 
and its reference trajectory satisfies:

		  � � �x v y vr r r r r r r r= = =cos , sin ,q q q w    �  (6) 

and

		  v m l m l mr r/ / |+ w e£ -1 �  (7) 

Among them, (xr, yr, qr, vr, wr) is the target values of (x, y, q, v, w), 
where e is a constant satisfies 0 < e < m/l.

Remark 1. We ensure the traceability of the trajectory by introduc-
ing a constant e in formula (7).

Figure 2 shows that system errors of DWMRs are defined as:
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The tracking errors system can be obtained by deriving the two 
sides of the above formula (8)
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Now our task is how to design the controller with satisfying the 
input constraints to make errors tend to zero.

3. � CONTROLLER DESIGN BASED ON 
RHOMBIC INPUT CONSTRAINTS

To design the controller, we need to use the following two lemmas:

Lemma 1 [7]. f:[0,∞) ® R is first-order continuous differentiable 
and lim ( )

t
f t

®¥
is a finite value, if �f t t( ), [ , )Î ¥0 is uniformly contin-

uous, then lim ( )
t

f t
®¥

� = 0.

Lemma 2 [7]. There is a scalar function r (x), x Î [0, ∞], which 
satisfies the following properties:

(1) 	 r (x) is a continuous and non-decreasing function;

(2) 	 r (0) = 0, and 0 < r (x) ≤ 1 for x Î [0, ∞];

(3) 	 lim ( )
x

x
®

¢ =
0

0+
r r , which r0 is a positive constant.

Define y (x) as
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Then, for "s Î (0, ∞), there always exist a and b, such that  
a < y (x) ≤ b  holds for x Î [0, s], where both a and b are positive 
constants.

r (x) = tanh(x) is a function that satisfies the above conditions.

In this paper, we refer to the controller designed in Blažič [8] as 
follows:
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where kx, ky and kq are positive constants. If the errors are too large, 
then v and w are more likely to break through the range of the 
rhombic input area through analysis formula (11). In this way, the 
control commands cannot be executed well.

Lemma 3 [7]. For controller (11), if following conditions are met:

(1) 	 k k k k k k k k kx x x y y y£ £ £ £ £ £, , q q q

(2) 	 ky is differentiable and �ky ³ 0 .

Figure 1 | Rectangular and diamond constraints.

Figure 2 | Trajectory tracking of DWMRs.
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where k k k k k kx x y y, , , , ,q q  are positive constant values. Then, tra-
jectory tracking errors of DWMRs will converge to zero, that is xe, 
ye, qe will converge to zero.

To use the vector method to design controller (11), we first need to 
define the controller v and w as a vector
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the controller can be represented by a combination of several vectors:

		  OD OA AB BC CD
� ��� � ��� � �� � �� � ���

= + + + �  (13) 

It is necessary to design each vector in turn, so that controller can 
finally meet the rhombic input constraints.
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From formula (14) we know that OA
� ��

 satisfies the rhombic input 
constraints, without loss of generality, we represent OA

� ���
 as shown 

in Figure 3, and because the length of AB
� ��

 is proportional to ky, we 
can definitely find a ky to make AB

� ��
 within the rhombic input con-

straints. Similarly, we can also find suitable kx and kq, so BC
� ��

 and 
CD
� ���

 can meet the rhombic constraints respectively. Obviously, the 
controller OD

� ���
 will definitely meet the rhombic input constraints.

Since the requirement for ky is �ky ³ 0 , we intuitively thought of 
designing if from Lyapunov function V(t).
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Let ky be
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where l and m are constants, 0 < l < 1 and m > 0. 

According to Equations (15) and (16), we can get
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If kx > 0 and kq > 0, then according to formula (17) and (18), �ky < 0  
can be derived, and further from formula (15) we can get
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In this way, the vector OB
� ��

 can be expressed as:
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We can verify that OB
� ��

 satisfies the rhombic input constraints 
through formulas (14)–(16). Because of kx, kq > 0, so the direc-
tions of the vectors BC

� ��
 and CD

� ���
 are determined by the signs of 

xe and qe. We want to occupy the entire area as much as possible 
under the premise that the controller meets the rhombic input 
constraints. First, we need to determine the triangle area ΔBEF 
where the points of C and D are located, as shown in Figure 3, 
when xe < 0 and qe > 0, we take the constraint segment  to 
determine the reference triangle ΔBE2F2, similarly, when xe > 0 
and qe > 0, we take the constraint segment  to determine the 
reference triangle ΔBE1F1, when xe < 0 and qe < 0, we get the 
reference triangle ΔBE3F3, and when xe < 0 and qe < 0, we get 
the reference triangle ΔBE4F4. Through the formulas of the four 
constraint lines and the coordinates of point B, we can easily 
obtain the coordinates of point E as:
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Similarly, we can get the coordinates of F as:
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where sgn(×); is sign function
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Figure 3 | Vector method design controller.
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Further we can get the expressions of BE
� ��

 and BF
� ��

 as
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To design kx and kq, let
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Then, we get from (12), (24), (26), that
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By formulas (15), (16), (20) and Lemma 2 we can easily get
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At this point, the kx, ky and kq meet the two conditions in Lemma 3, 
so the system error will converge to zero. And because of our vector 
method design the parameters ensure that the control variables v 
and w  meet the rhombic input constraints too.

4.  SIMULATION RESULTS

In this section, we verify the performance of the controller 
through simulation and compare it with the controller in Chen 
et al. [7]. Before the simulation starts, some parameters are set as 
follows:

The maximum velocity of the drive wheels is set to m = 0.4 m/s, the 
wheel spacing is set to l = 0.16 m, for setting some parameters of 
the controller, we choose ρ(x) = tanh(x), e = 0.1, l = 0.99, m = 0.01.

Figure 4 shows a robot gradually tracks on the reference trajectory, 
where the blue line represents the expected trajectory, and the red 
line represents the actual trajectory. Figure 5 shows the tracking 
errors xe, ye, qe are each gradually converge to zero, also we can 
guarantee the control variables v and w satisfy the rhombic input 
constraints through Figure 6, and sometimes v can basically reach 
the bounds of rhombic input constraints. Figure 7a is the tracking 
errors diagram under the controller in Chen et al. [7], Figure 7b is 

Figure 4 | Tracking reference trajectory.

Figure 5 | Tracking errors.

Figure 6 | Input and constraints.

Figure 7 | Controller errors comparison.
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the tracking errors diagram under our controller, it can be seen that 
our controller can make the errors converge faster, and the oscilla-
tion is smaller.

5.  CONCLUSION

The tracking control problem of DWMRs with rhombic input con-
straints is solved in this paper. Compared with existing methods, 
we have improved the design of controller parameters and achieved 
better performance. Also our method can better exert the robots’ 
mobility and makes the tracking errors converge faster. The con-
troller simultaneously solves the tracking problem and stability 
problem, its effectiveness can be confirmed by simulation results. 
Future work will focus on the controller design with uncertainty 
based on a more complex application environment.
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