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ABSTRA C T 
Previous spherical mobile robots were driven by two rollers with a fixed rotational axis, which 
restricts the angular velocity vector of the sphere to two dimensions. Three-dimensional freedom 
is expected to improve the rotational diversity of the sphere. This study proposes a spherical 
mobile robot with a variable roller-rotational axis that allows the movement of three degrees of 
freedom. Furthermore, the kinetic energy of transporting the sphere by the rollers is minimized 
by an optimization procedure and it is shown that the kinetic energy of sphere transport is efficient. 
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              This is an open access article distributed under the CC BY-NC 4.0 license 
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1. Introduction

Many types of robots, such as omnidirectional mobile
robots and sphere-transported robots, are based on 
spherical motions. Therefore, various roller 
arrangements have been proposed for mobile robot 
applications.  

Table 1 shows the usage statuses of single spherical 
robots operated by different mechanisms, and the 
dimensions of the existence spaces of their angular 
velocity vectors. Figure 1 shows the numbers of rollers 
𝑁𝑁𝑤𝑤  arranged per wheel in each mechanism, and their 
contact types.  
    In the ACROBAT-S [1] mechanism with 𝑁𝑁𝑤𝑤 = 2, the 
caster of each sphere is driven by two roller drives (see 
Figure 1 (a)). The wheel chair mechanism [2] has three 
spheres (Figure 1 (b)). The rollers are arranged on the 
equator, generate an angular velocity vector on the 
horizontal plane, and can move in all directions. The 
angular velocity vector of the sphere has two-
dimensional freedom. This situation is theoretically 

considered in [3]. In the ball dribbling mechanism [4], the 
rollers are arranged in the upper hemisphere, where they 
hold the balls by friction (See Figure 1 (c)). The two-
dimensionality of the sphere’s angular velocity vector in 
these mechanisms was affirmed in kinematic studies of a 
sphere with slipping [5]. In addition, the kinematics of 
the reverse motion was verified in a demonstration 
experiment [6].  
    Among the three-roller cases (𝑁𝑁𝑤𝑤 = 3), OWMPs [7] 
deployed in highway maintenance move the spheres 
within three constrained rollers (See Figure 1 (d)).The 
rollers are arranged on the equator parallel to the 
horizontal plane, and the sphere can be rotated in all 
directions by generating an angular velocity vector on the 
plane (note that the existence space of the angular 
velocity vector is two-dimensional).  

A ball-balanced robot [8] has three unconstrained 
rollers (omni-rollers) arranged in a regular triangular 
configuration (See Figure 1 (e)). CPU-Ball Bot [9] has 
four unconstrained rollers fixed in a square configuration 
(See Figure 1 (f)).  
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In the OWMP, A ball-balanced and CPU-Ball Bot 
mechanisms [7]-[9], the wheel stands are spherical. In 
particular, A ball-balanced [8] and CPU-Ball Bot [9] 
mechanisms can rotate the sphere in three-dimensions 
using the passive rotation characteristics of the non-
rotating direction of the omni-roller. 
 Such three-dimensional freedom of the angular 
velocity vector of a sphere will improve the motion 
diversity of the sphere.  
However, unconstrained rollers can slip, degrading the 
accuracy of the control. Therefore, the use of 
constraining rollers is desired. 
   As shown in Figure 1 (c), this problem can be solved 
by freeing the rotation axis of the constraining roller, 
enabling three-dimensional rotation of the sphere. 

 
Table 1   Existence space of angular velocity vector for              

sphere mobile robot 
 

Mechanism statuses 
Rotational 
Dimension 

ACROBAT-S[1] Caster 2 

Wheel chair [2] Wheel 2 

Ball dribbling mechanism [4] Sphere 
conveyance 2 

OWMPs [7] Wheel 2 

A ball-balanced robot [8] Wheel 3 

CPU-Ball Bot [9] Wheel 3 

 

 
 
Figure 1   Type of roller arrangement for sphere mobile 
robot 

 
the angular velocity vector of a sphere will improve the 
motion diversity of the sphere. However, a mechanism 
adapting two constrained rollers is suitable in a spherical 

object conveyance. It is desired to transport with  high 
kinetic energy efficiency. 
   In this study, we optimize the total kinetic energy of 
two rollers. Section 2 calculates the angle of the 
rotational axis of the sphere, and theoretical formula of 
minimizes the sum of the kinetic energies of the two 
rollers. Section 3 presents a simulation of total kinetic 
energy, and Section 4 summarizes the results and suggests 
ideas for future work. 
 
2. Total kinetic energy 
 
2.1 Angular velocity vector of the sphere  
 The center 𝑶𝑶 of a sphere with radius r is fixed as the 
origin of the coordinate system 𝛴𝛴 − 𝑥𝑥𝑥𝑥𝑥𝑥 . The 𝑖𝑖th 
constraint roller (i = 1 or 2) is in point contact with the 
sphere at a position vector 𝑷𝑷𝒊𝒊 and is arranged such that 
the center of mass of the roller 𝑷𝑷𝒊𝒊 and 𝑶𝑶 are on the same 
line. 𝝎𝝎  denotes the angular velocity vector of the 
sphere. 𝜼𝜼𝒊𝒊 denotes the unit vector along the rotational 
axis of constraint roller. sphere direction 𝜑𝜑 (0° ≤ 𝜑𝜑 <
360°) is the angle from 𝑥𝑥-axis.  

Now, given the sphere mobile velocity 𝑽𝑽 (the center 
velocity of sphere)  

𝑽𝑽 = ‖𝑽𝑽‖[cos𝜑𝜑 sin𝜑𝜑 0]𝑇𝑇  (1)  

�́�𝝎  denote orthogonal projection of 𝝎𝝎  with respect to 
𝑥𝑥𝑥𝑥 −plane. �́�𝝎 is perpendicular to 𝑽𝑽 and represented as 
Equation (2) (𝑽𝑽 is depend on  �́�𝝎 ). 

�́�𝝎  =
‖𝑽𝑽‖
𝑟𝑟

 [−sin𝜑𝜑 cos𝜑𝜑 0]𝑇𝑇 (2)  

And. �́�𝝎  is orthogonal projection of 𝝎𝝎  with respect to 
𝑥𝑥𝑥𝑥 − plane.The angle of sphere rotational axis 𝜌𝜌 
( −90° ≤ 𝜌𝜌 ≤ 90° ) is the angle between  𝝎𝝎 and �́�𝝎 . 
Therefore, 𝝎𝝎 =  �𝜔𝜔𝑥𝑥,𝜔𝜔𝑦𝑦 ,𝜔𝜔𝑧𝑧�

𝑇𝑇
 has one-dimensional of 

freedom with parameter 𝜌𝜌 (𝜔𝜔𝑧𝑧 = ‖𝑽𝑽‖ tan 𝜌𝜌 /𝑟𝑟). 

𝝎𝝎 =
‖𝑽𝑽‖
𝑟𝑟

[−sin𝜑𝜑 cos𝜑𝜑 tan𝜌𝜌]𝑇𝑇 (3)  

Generally, these depend on the orthogonal projection 
vector of 𝑽𝑽 , it has one-dimensional of freedom with 
respect to 𝜔𝜔𝑧𝑧 = ‖𝑽𝑽‖ tan𝜌𝜌 /𝑟𝑟. 
 
2.2 Kinetic energy of the two rollers    
 
   Consider two rollers with radius  𝑅𝑅 , moment  𝐼𝐼,  and 
roller’s angular velocity 𝜔𝜔𝑖𝑖  at 𝑷𝑷𝒊𝒊. The summed kinetic 
energy of the rollers is given by  Eqs.(4).  
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             𝐸𝐸 =  𝐼𝐼(𝜔𝜔12 + 𝜔𝜔2
2) 

(4)  

    =
𝐼𝐼
𝑅𝑅2

(‖𝝎𝝎 × 𝑷𝑷1‖2 + ‖𝝎𝝎 × 𝑷𝑷2‖2) 

   Using the angular velocity vector of a sphere, we now 
derive the kinetic energy of Type-I (with both rotational 
axes fixed on the same plane) and Type-II (with 
variable rotational axes) configurations(indicated in 
Figure 2 (a)(b)). 
 
(A) Case of Type- I 
  As shown in Figure 2 (a), if both rotational axes 
lie on the same plane, omnidirectional locomotion is 
possible (see [4]). Therefore, the end point of 𝝎𝝎𝟏𝟏 can 
be determined as the intersection of 𝑙𝑙  (the line 
perpendicular to the horizontal plane passing through 
end point �́�𝝎 ) and 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬{𝑷𝑷𝟏𝟏,𝑷𝑷𝟐𝟐} . The angle of the 
sphere’s rotational axis 𝜌𝜌1 is then obtained as follows: 

𝜌𝜌1 = tan−1 �
(𝑷𝑷𝟏𝟏 × 𝑷𝑷𝟐𝟐)𝑥𝑥sin𝜑𝜑 − (𝑷𝑷𝟏𝟏 × 𝑷𝑷𝟐𝟐)𝑦𝑦 cos𝜑𝜑

(𝑷𝑷𝟏𝟏 × 𝑷𝑷𝟐𝟐)𝑧𝑧
� 

 (5)  

By substituting Eqs. (5) into Eqs. (3)， we obtain 𝝎𝝎𝟏𝟏 
as Eqs. (6). 

  𝝎𝝎𝟏𝟏 = (6)  

‖𝑽𝑽‖
𝑟𝑟 �−sin𝜑𝜑 , cos𝜑𝜑 ,

(𝑷𝑷𝟏𝟏 × 𝑷𝑷𝟐𝟐)𝑥𝑥 sin𝜑𝜑 − (𝑷𝑷𝟏𝟏 × 𝑷𝑷𝟐𝟐)𝑦𝑦cos𝜑𝜑
(𝑷𝑷𝟏𝟏 × 𝑷𝑷𝟐𝟐)𝑧𝑧

�
𝑇𝑇

 

Substituting Eqs.(6) into Eqs.(4)， we obtain 𝐸𝐸 = 𝐸𝐸1 
as Eqs.(7). 

𝐸𝐸1 =
𝐼𝐼
𝑅𝑅2

(‖𝝎𝝎𝟏𝟏 × 𝑷𝑷1‖2 + ‖𝝎𝝎𝟏𝟏 × 𝑷𝑷2‖2) (7)  

 
(B) Case of Type-Ⅱ 
   As shown in Figure 2 (b), we determine  𝜌𝜌 = 𝜌𝜌1, 𝝎𝝎 =
𝝎𝝎𝟐𝟐  that minimizes the summed kinetic energies of the 
two rollers, and calculate the minimum energy (𝐸𝐸 = 𝐸𝐸2).  

To this end, we first express 𝝎𝝎 as the sum of �́�𝝎 and 
𝜔𝜔𝑧𝑧𝒆𝒆𝟑𝟑.  

𝝎𝝎 = �́�𝝎 + 𝜔𝜔𝑧𝑧𝒆𝒆𝟑𝟑 (8)  

where 

𝒆𝒆𝟑𝟑 = [0, 0, 1]𝑇𝑇, �́�𝝎 = �𝜔𝜔𝑥𝑥 ,𝜔𝜔𝑦𝑦 , 0�𝑇𝑇 (9)  

And. 
  𝝎𝝎 × 𝑷𝑷𝑖𝑖 = (�́�𝝎 + 𝜔𝜔𝑧𝑧𝒆𝒆𝟑𝟑) × 𝑷𝑷𝑖𝑖 (10)  

 = �́�𝝎 × 𝑷𝑷𝑖𝑖 + 𝜔𝜔𝑧𝑧(𝒆𝒆𝟑𝟑 × 𝑷𝑷𝑖𝑖) 
‖𝝎𝝎 × 𝑷𝑷𝑖𝑖‖2 (11)  

= 〈�́�𝝎 × 𝑷𝑷𝑖𝑖 + 𝜔𝜔𝑧𝑧(𝒆𝒆𝟑𝟑 × 𝑷𝑷𝑖𝑖) , �́�𝝎 × 𝑷𝑷𝑖𝑖 + 𝜔𝜔𝑧𝑧(𝒆𝒆𝟑𝟑 × 𝑷𝑷𝑖𝑖)〉 

= 𝜔𝜔𝑧𝑧2‖𝒆𝒆𝟑𝟑 × 𝑷𝑷𝑖𝑖‖2 + 2𝜔𝜔𝑧𝑧〈�́�𝝎 × 𝑷𝑷𝑖𝑖 , 𝒆𝒆𝟑𝟑 × 𝑷𝑷𝑖𝑖〉 + ‖�́�𝝎 × 𝑷𝑷𝑖𝑖‖2 
Using, Eqs.(11),  it is represented as quadratic function 
with respect to 𝜔𝜔𝑧𝑧 as Eqs.(12) 

‖𝝎𝝎 × 𝑷𝑷𝑖𝑖‖2 + ‖𝝎𝝎 × 𝑷𝑷𝑖𝑖‖2 =  (12)  

  
(a) (b) 

Figure. 2   Existence of the sphere angular velocity vector with respect to sphere movile velocity.(a) 𝝎𝝎𝟏𝟏 is determined 
(𝝎𝝎𝟏𝟏 is lay on intersection 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬{𝑷𝑷𝟏𝟏,𝑷𝑷𝟐𝟐} and line 𝒍𝒍 . (b) 𝝎𝝎𝟐𝟐  is determined as minimizes the summed kinetic energies 
of the two rollers. 
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(‖𝒆𝒆𝟑𝟑 × 𝑷𝑷1‖2 + ‖𝒆𝒆𝟑𝟑 × 𝑷𝑷2‖2)𝜔𝜔𝑧𝑧2 

      + 2(〈�́�𝝎 × 𝑷𝑷1, 𝒆𝒆𝟑𝟑 × 𝑷𝑷1〉 + 〈�́�𝝎 × 𝑷𝑷2, 𝒆𝒆𝟑𝟑 ×
𝑷𝑷2〉)𝜔𝜔𝑧𝑧 

+ ‖�́�𝝎 × 𝑷𝑷1‖2 + ‖�́�𝝎 × 𝑷𝑷2‖2 
Hence, focusing the coefficients of Eqs.(12), 𝐸𝐸 takes 
minimal value 𝐸𝐸2 as Eqs.(13). 

 𝐸𝐸2 = (‖�́�𝝎 × 𝑷𝑷1‖2+‖�́�𝝎 × 𝑷𝑷2‖2) 𝐼𝐼
𝑅𝑅2
 (13)  

    −
(〈�́�𝝎 × 𝑷𝑷1, 𝒆𝒆𝟑𝟑 × 𝑷𝑷1〉 + 〈�́�𝝎 × 𝑷𝑷2, 𝒆𝒆𝟑𝟑 × 𝑷𝑷2〉)

‖𝒆𝒆𝟑𝟑 × 𝑷𝑷1‖2 + ‖𝒆𝒆𝟑𝟑 × 𝑷𝑷2‖2
 

where    

𝜔𝜔𝑧𝑧 = −
〈�́�𝝎 × 𝑷𝑷1, 𝒆𝒆𝟑𝟑 × 𝑷𝑷1〉 + 〈�́�𝝎 × 𝑷𝑷2, 𝒆𝒆𝟑𝟑 × 𝑷𝑷2〉

‖𝒆𝒆𝟑𝟑 × 𝑷𝑷1‖2 + ‖𝒆𝒆𝟑𝟑 × 𝑷𝑷2‖2
 (14)  

𝜌𝜌2 = tan−1 �−
〈�́�𝝎 × 𝑷𝑷1,𝒆𝒆𝟑𝟑 × 𝑷𝑷1〉 + 〈�́�𝝎 × 𝑷𝑷2,𝒆𝒆𝟑𝟑 × 𝑷𝑷2〉

‖𝒆𝒆𝟑𝟑 × 𝑷𝑷1‖2 + ‖𝒆𝒆𝟑𝟑 × 𝑷𝑷2‖2
� 

 (15)  

Substituting Eqs.(15) into Eqs.(3), 𝝎𝝎𝟐𝟐 as Eqs.(16). 

  𝝎𝝎𝟐𝟐 = (16)  

‖𝑽𝑽‖
𝑟𝑟 �−sin𝜑𝜑 , cos𝜑𝜑 ,−

〈�́�𝝎 × 𝑷𝑷1, 𝒆𝒆𝟑𝟑 × 𝑷𝑷1〉 + 〈�́�𝝎 × 𝑷𝑷2,𝒆𝒆𝟑𝟑 × 𝑷𝑷2〉
‖𝒆𝒆𝟑𝟑 × 𝑷𝑷1‖2 + ‖𝒆𝒆𝟑𝟑 × 𝑷𝑷2‖2

�
𝑇𝑇

 

 
3.  Simulation 
 
    This section presents the simulation results 𝝎𝝎1 (See 
Eqs.(6)), 𝝎𝝎2 (See Eqs.(16)), 𝐸𝐸1  (See Eqs.(7)) and 
𝐸𝐸2(See Eqs.(13)) with parameter 𝜑𝜑 (0° ≤ 𝜑𝜑 < 360°) in 
the given sphere mobile speed: ‖𝑽𝑽‖ = 1  [m/s]. The 
conditions are as follows: 𝐼𝐼 = 1, 𝑅𝑅 = 00.1[m], ‖𝑽𝑽‖ =
1 [m/s] , 𝑟𝑟 = 0.1[m],𝜃𝜃1,1 = 215°, 𝜃𝜃1,2 = 60°, 𝜃𝜃2,1 =
325°,𝜃𝜃2,2 = 60 °. 
 
3.1 Trajectory of the end point of the angler velocity 
vector and Totally kinetic energy 

 
This section presents the simulated trajectory of the 

end points of the angler velocity vectors 𝝎𝝎1and 𝝎𝝎2, and 
the kinetic energies 𝐸𝐸1 and 𝐸𝐸2 . 

As shown in Figure 3 (a), the ellipsoid trajectory of 
𝝎𝝎2  lies nearer to the 𝑥𝑥𝑥𝑥-plane than that of 𝝎𝝎1, and 
both trajectories cross a common line parallel to the 
𝑥𝑥-axis. 

As shown in Figure 3 (b), 𝐸𝐸1  is minimized at sphere 
direction angles 𝜑𝜑 =  90°  and  270°, 
and maximized at 𝜑𝜑 = 0° and 180°. Meanwhile, 𝐸𝐸2   is 
minimized at 𝜑𝜑 = 0° and 180°, and maximized at 𝜑𝜑 = 
90° and 270°.  And. 𝐸𝐸1  and 𝐸𝐸2  are same value at 𝜑𝜑 = 
90° and 270°. 

(a)   

 
(b)   
 

Figure 3  Simulation result. (a) Trajectory of angular velocity 
vector of sphere. (b) Totally kinetic energy  
 
3.2 Example of sphere transfer 
This subsection simulates the sphere transportation 
process. As shown in Figure 4, the robot's transfer route 
starts at 𝑶𝑶  and reaches 𝑷𝑷  and 𝑸𝑸 . Each path 𝑶𝑶𝑷𝑷  (𝜑𝜑 = 
90°), 𝑷𝑷𝑸𝑸 (𝜑𝜑 = 45°) and 𝑸𝑸𝑸𝑸 (𝜑𝜑 = 0°) is completed after 
some time 𝑡𝑡 (0 ≤ 𝑡𝑡 ≤ 5).  
     The direction angle and mobile speed of the spherical 
wheel are defined as functions of 𝑡𝑡 (see Figure 5). 

𝜑𝜑(𝑡𝑡) = �
90°     0 ≤ 𝑡𝑡 ≤ 5

   45°    5 ≤ 𝑡𝑡 ≤ 10 
    0 °   10 ≤ 𝑡𝑡 ≤ 15

 (17)  

‖𝑽𝑽‖ = �
   𝑡𝑡      (0 ≤ 𝑡𝑡 ≤ 1 , 5 ≤ 𝑡𝑡 ≤ 6 , 10 ≤ 𝑡𝑡 ≤ 11)
   1      (1 ≤ 𝑡𝑡 ≤ 4 , 6 ≤ 𝑡𝑡 ≤ 9 , 11 ≤ 𝑡𝑡 ≤ 14)

  5 − 𝑡𝑡  (4 ≤ 𝑡𝑡 ≤ 5 , 9 ≤ 𝑡𝑡 ≤ 10, 14 ≤ 𝑡𝑡 ≤ 15)
 

 (18)  
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Substituting Eqs. (17) and (18) into Eqs. (6) and (16) 
respectively, we obtain 𝝎𝝎𝟏𝟏(𝑡𝑡)  and  𝝎𝝎𝟐𝟐(𝑡𝑡), 
respectively. Moreover, substituting 𝝎𝝎𝟏𝟏(𝑡𝑡) and 𝝎𝝎𝟐𝟐(𝑡𝑡) 
into Eqs. (7) and (13) respectively, we obtain 
𝐸𝐸1(𝑡𝑡) and 𝐸𝐸2 (𝑡𝑡), respectively. 
    The simulation result is shown in Figure 6. In the 
interval [0, 5], the robot is traveling straight, so we have 
𝐸𝐸1(𝑡𝑡) = 𝐸𝐸2(𝑡𝑡). In the interval [5, 15], 𝐸𝐸2(𝑡𝑡) is smaller 
than 𝐸𝐸1(𝑡𝑡). 
 
Table 2   The totally kinetic energy efficiency in sphere 
transport 

Migration pathway 𝑶𝑶𝑷𝑷 𝑷𝑷𝑸𝑸 𝑸𝑸𝑸𝑸 

[𝑎𝑎, 𝑏𝑏] [0, 5] [5, 10] [10, 15] 
𝜑𝜑 90° 45° 0° 

𝑬𝑬𝑖𝑖
[𝑎𝑎,𝑏𝑏] 

Type-Ⅰ 1.66 2.55 3.39 
Type-Ⅱ 1.66 1.49 1.34 

𝛾𝛾[𝑎𝑎,𝑏𝑏] 0 % 41 % 61 % 
𝛾𝛾[0,15] 34 % (Total energy reduction ratio) 

 
   And. we define integration of 𝐸𝐸1(𝑡𝑡),𝐸𝐸2(𝑡𝑡) with respect 
to time interval [𝑎𝑎, 𝑏𝑏]. 

𝑬𝑬𝑖𝑖
[𝑎𝑎,𝑏𝑏] = � 𝐸𝐸𝑖𝑖(𝑡𝑡)

𝑏𝑏

𝑎𝑎
 𝑑𝑑𝑥𝑥 (19)  

    Energy-reduction ratio in [𝑎𝑎, 𝑏𝑏] is defined as follow. 

𝛾𝛾[𝑎𝑎,𝑏𝑏] = 100(1 − 𝑬𝑬2
[𝑎𝑎,𝑏𝑏]/𝑬𝑬1

[𝑎𝑎,𝑏𝑏]) [%] (20)  

    As shown in Table 2, it is represented by 𝛾𝛾[0,5] =
0 [%], 𝛾𝛾[5,10] = 41 [%] , 𝛾𝛾[10,15] = 61 [%]  and is 
𝛾𝛾[0,15] = 34 [%]. Therefore, the kinetic energy of sphere 
transport was efficient. 
 
 

 
 

Figure 4    The robot's transfer route 
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Figure 5   The definition (a). Sphere direction (b). Sphere 
     mobile speed 
 

 
Figure 6   Simulation result of totally kinetic energy  
 
 
4.   Conclusion 
 

We proposed a non-offset mechanism with three-
dimensional freedom under the assumption of variable 
rotational axes of the rollers. The kinetic energy 
consumption was compared with that of the previous 
fixed type in a simulation of sphere transportation, which 
confirmed a large energy reduction in the proposed 
mechanism. 

In future work, we plan to evaluate the kinetic energy 
of the roller arrangement at an arbitrary contact point on 
the upper hemisphere as an evaluation function. 
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