
Corresponding author’s E-mail: hori-sansei@edu.brain.kyutech.ac.jp, tamukoh@brain.kyutech.ac.jp
 https://www.kyutech.ac.jp/english/, https://www.brain.kyutech.ac.jp/~neuro/?lang=en

37

Research Article

A Control and Data Transfer Platform for FPGA Applications

Sansei Hori1, Hakaru Tamukoh2
1Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology,2-4 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0196,
Japan
2 Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Research Center for Neuromorphic AI Hardware,
2-4 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0196, Japan

A R T I C LE IN FO

Article History

Received 25 November 2020
Accepted 08 November 2021

Keywords

FPGA
Hardware Accelerator
Xillybus
RBM

A B S T R A C T
Deep learning technology has made remarkable progress in recent years and has been adopted for
a variety of applications such as smartphones and cloud servers. These systems employ dedicated
processors to reduce power consumption and process massive amounts of data. In this paper, we
propose a field-programmable gate array (FPGA) infrastructure for easy verification of user logic.
The infrastructure makes it easy to communicate and control a host PC and user logic. We
implemented two example logics, which were simple image processing and a restricted
Boltzmann machine, into the infrastructure to confirm these features

© 2022 The Author. Published by Sugisaka Masanori at ALife Robotics Corporation Ltd
This is an open access article distributed under the CC BY-NC 4.0 license
(http://creativecommons.org/licenses/by-nc/4.0/).

1. Introduction

In recent years, neural network technologies such as deep
learning1 have been utilized in many applications2, such
as image processing and natural language processing. In
particular, these technologies have been actively applied
to various embedded fields, including smartphone
applications.

However, most deep neural network (DNN) trainings
require a significant amount of calculation resources and
are often performed on high-performance computers with
graphics processing units (GPUs)3. On the other hand,
some embedded systems have restrictions, such as power
consumption and physical size, to implement
applications that use DNNs. Therefore, application-
specific integrated circuits (ASICs) and system-on-a-
chip (SoC) dedicated DNNs4,5 have been actively
developed to accelerate the processing and reduce power

consumption. Some of these technologies have already
yielded practical applications.

Field-programmable gate arrays (FPGAs)6 can also
be used to create dedicated logic and can be rewritten,
making it possible to build more general-purpose systems.

We have proposed resource-saving hardware
implementation of a restricted Boltzmann machine
(RBM)7,8, which is a building block of deep belief
networks (DBNs) and deep Boltzmann machines
(DBMs)9. However, hardware implementation of a user
circuit on an FPGA is costly work. In this paper, we
propose an FPGA infrastructure for verifying the logic
implemented in an FPGA. In addition, to verify the
operation of the proposed FPGA infrastructure, we
implemented two types of hardware logic: a simple
image processing logic and a conventional RBM10,11
logic. We confirm that the logic can be controlled by a
host computer using the infrastructure.

This paper is an extended version of Ref. 12.

SUGISAKA
MASANORI

Journal of Robotics, Networking and Artificial Life
Vol. 9(1); June (2022), pp. 37–42

ISSN (Online): 2352-6386; ISSN (Print): 2405-9021
https://alife-robotics.org/jrnal.html

mailto:tamukoh@brain.kyutech.ac.jp
http://creativecommons.org/licenses/by-nc/4.0/
https://grp.isbn-international.org/search/piid_solr?keys=sugisaka
https://grp.isbn-international.org/search/piid_solr?keys=sugisaka
https://grp.isbn-international.org/search/piid_solr?keys=sugisaka

38

2. Restricted Boltzmann Machine

An RBM is a generative model and forms part of the
structure of DNNs13. An RBM has two layers: a visible
layer and a hidden layer, as shown in Fig. 1. The
probability distribution of an RBM is calculated by Eq.
(1), where 𝒗𝒗 and 𝒉𝒉 represent the states of the visible and
hidden units, respectively, and 𝜽𝜽 is a set of network
parameters. 𝑍𝑍(𝜽𝜽), as shown in Eq. (2), is a normalized
term, and Φ as shown in Eq. (3), is an energy function,
where 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑗𝑗 represent the biases of the visible and
hidden units, respectively, and 𝑤𝑤𝑖𝑖𝑗𝑗 is the weight.

𝑝𝑝(𝒗𝒗,𝒉𝒉|𝜽𝜽) =
1

𝑍𝑍(𝜽𝜽) 𝑒𝑒
−Φ(𝒗𝒗,𝒉𝒉,𝜽𝜽). (1)

𝑍𝑍(𝜽𝜽) = �𝑒𝑒−Φ(𝒗𝒗,𝒉𝒉,𝜽𝜽)

𝒗𝒗,𝒉𝒉

. (2)

Φ(𝒗𝒗,𝒉𝒉,𝜽𝜽) = −�𝑎𝑎𝑖𝑖𝑣𝑣𝑖𝑖
𝑗𝑗

−�𝑏𝑏𝑗𝑗ℎ𝑗𝑗
𝑗𝑗

−��𝑤𝑤𝑖𝑖𝑗𝑗𝑣𝑣𝑖𝑖ℎ𝑗𝑗
𝑗𝑗𝑖𝑖

.
(3)

The firing probabilities of the visible and hidden units

of the RBM are calculated by the following equations,
where 𝜎𝜎(𝑥𝑥) is a sigmoid function. The firing probability
determines the state of each unit in the RBM.

𝑝𝑝�ℎ𝑗𝑗 = 1�𝒗𝒗,𝜽𝜽� = 𝜎𝜎 �𝑏𝑏𝑗𝑗 + �𝑤𝑤𝑖𝑖𝑗𝑗𝑣𝑣𝑖𝑖
𝑖𝑖

�. (4)

𝑝𝑝(𝑣𝑣𝑖𝑖 = 1|𝒉𝒉,𝜽𝜽) = 𝜎𝜎�𝑎𝑎𝑖𝑖 + �𝑤𝑤𝑖𝑖𝑗𝑗ℎ𝑗𝑗
𝑗𝑗

�. (5)

3. Verification Infrastructure on FPGA

Figure 2 shows the configuration of the proposed user
logic verification infrastructure. In this system, an FPGA
is connected to the host PC via a PCI Express bus to
communicate and control the user logic. When
configuring the FPGA, this system uses a joint test action
group (JTAG). The user can connect the user logic with
two AXI interfaces to communicate with the user logic.
In this section, we describe the main components of the
system.

3.1. The interface between the host PC and the
FPGA

We use a PCI Express bus to connect the host PC to the
FPGA to control the user logic and communicate
data using software on the host PC. This system applies
Xillybus14 to realize the PCI Express connections, which
can convert the PCI Express data communications to first
in first out (FIFO) or AXI-Stream. The host PC can
access the FPGA by reading or writing device files on its
operating system.

3.2. User logic

User logic is shown in Fig. 2, which is a central
component of the FPGA system, and this implements the
processes of one part of a user application. The user
application consists of two parts: software on the host PC
and the user logic on the FPGA system. Hardware-
optimized processing logic is implemented in the user
logic to realize high-performance processing, compared
to a software-only system.

The minimum requirements of the user logic are
interfaces that connect special function registers (SFRs)
and the Xillybus Core, and the two states of processing.

Fig. 1. Restricted Boltzmann machine.

Fig. 2. User logic verification infrastructure.

39

The interfaces are described in this paper. The processing
states include both standby and active states. In the
standby state, the logic waits for an execution signal from
the host PC. In the case of the active state, the logic runs.
User logic developers can implement more than two
states in the active state, if necessary.

3.3. Internal bus and user logic interface

This system applies the AXI bus as an internal bus to
connect all modules except the interfaces for the Xillybus
core. The user logic has an AXI-Stream and AXI
interface. The AXI-Stream interface connects directly to
the Xillybus core, and this data path is used for data
transfer. The AXI interface connects to the AXI
interconnect and is used for the internal bus to control the
user logic, from the host PC, through the SFRs.

3.4. Control registers

The software running on the host PC can control and
monitor the user logic on the FPGA by accessing the
control and status registers implemented in the SFRs. The
user logic on the FPGA can also access the SFRs and
return its status, such as in-process or completed, to the
software.

The SFR example is shown in Fig. 3, where mode bits
are parameters to switch the user logic behaviors, and E
is an execution flag of user logic. The layout shown in
Fig. 3 is an example, and the user can design the form as
necessary.

3.5. AXI-Stream to AXI bridge

The AXI-Stream to AXI bridge module extracts an
address and data from the 8-bit stream data, sent from the
Xillybus core, to access the SFRs. It is necessary to
connect the core to the SFRs, implemented in block
RAMs (BRAMs), because the Xillybus core provides
AXI-Stream interfaces.

3.6. Access sequences for SFRs via Xillybus

This section explains the details of the access procedure
from the host PC to the SFRs via AXI-Stream interfaces
provided by Xillybus.

The system requires two transactions to access the SFR,
as shown in Fig. 4. The first transmits a destination
address and mode information, which has read and write
modes, from the host PC to the system. The read and
write mode bit indicate the direction of data transfer.
When it is set to zero, the mode is the read mode.
Conversely, when the mode bit is set to one, the mode is
the write mode. The second sends or receives an SFR
parameter. In the read mode, the transaction is for reading
the parameter from the SFRs to the host PC. By contrast,
in the case of the writing mode the transaction is for
writing the parameter from the host PC to the SFRs. The
AXI-Stream to AXI bridge controls these two
transactions.

3.7. A control method for the user logic

Steps to start the user logic (Fig. 2) via the SFRs (Fig. 3)
from the host PC.
(i) An FPGA is configured.

(ii) The user logic wakes up in a standby state, and the
logic starts watching an “execution flag”, designed
on the SFR.

(iii) The host PC sets parameters to control the user logic,
for example, mode bits for switching behaviors of
the user logic, on the designed address of the SFR.

(iv) The host PC sets the execution flag on the SFR.
(v) User logic processes wake up.

(vi) The user logic reads the mode bits on the SFR, and
the logic starts a process specified by the bits.

(vii) After finishing the user logic process, the logic
negates the execution flag on the SFR.

(viii) The host PC ensure that the logic completes its
process by watching the negation of the flag.

As mentioned above, the user logic always watches

the execution flag in a standby state after the FPGA
configuration. By contrast, the host PC can also watch the
execution flag through Xillybus to check the user logic
state. Furthermore, the data transfer through the 32-bit
AXI-Stream interface can be executed separately from

Fig. 3. Layout example of the SFR.

Fig. 4. Data structures to access the SFRs. R/W means a
read and write mode bit.

40

the control steps, as shown above, and, if necessary,
during the processing of the user logic.

4. APIs for Software on the Host PC

This section explains the method for communicating
software on the host PC with the proposed infrastructure
and application programming interfaces (APIs) that we
created to facilitate communication.

4.1. Device files for Xillybus

Linux operating systems provide interfaces, called device
files, to access peripheral devices such as USB devices
and PCI Express devices. The software reads or writes
device files to communicate with peripheral devices.

In the case of the Xillybus, the device files commonly
appear under the “/dev” directory as xillybus_read_8,
xillybus_read_32, xillybus_write_8, and
xillybus_write_32. In the C++ programming
environment, the software must first open the device file.
Second, the software uses system calls to write or read
device files.

4.2. APIs for Xillybus communication

To access the SFRs, the software must make two
transactions to send the read or write mode bit, an SFR
address, and an SFR parameter, which are explained in
Section 3.6. These steps are complicated for software
developers. Therefore, we created APIs, named
xillybus_tools and sfr_tools, to make it easy to
communicate the user logic and the SFRs via Xillybus
from the software.

The xillybus_tools provide basic data communication
functions to the software on the host PC. The API
provides two classes: “xillybus8” and “xillybus32.” The
software uses the xillybus32 class to receive or transmit
data (i.e., an unsigned int value, an array, and a
std::vector) to the user logic on the FPGA system through
the 32-bit AXI-Stream interface.

The sfr_tools provide functions to make address-
based transactions, explained in Section 3.6, to the
software on the host PC. It requires a “xillybus8” class
object to access Xillybus. The software only needs to call
one function to access the SFRs and does not require the
generation of transactions, such as a read and write flag,
an address, or the SFR parameter.

We opened these APIs on GitHub15, 16

5. Verification of the Infrastructure

We implemented two applications on the system to verify
the operation of the infrastructure. The first is a simple
image processing application that reverses the colors of

an input grayscale image to validate the SFR and data
communication between the host PC and the FPGA
system. The second is the conventional RBM. This
application is implemented to validate the system using
full-fledged user logic, which has many processing
modes, parameters, and data. Note that these applications
were developed by a high-level synthesis17 environment,
provided by Xilinx Inc.18

5.1. A simple image processing logic

This is a very simple image processing application that
reverses the colors of an input grayscale image to validate
transmitting parameters to the SFRs from the software on
the host PC, controlling the user logic and data
communication via the Xillybus.
This application reverses the colors of the input grayscale
image, as shown in Eq. (6).

𝑦𝑦 = 255 − 𝑥𝑥. (6)
In the equation, 𝑦𝑦 represents the converted pixel value,
and 𝑥𝑥 is the original pixel value. All pixels have 8-bits
values.

User logic has three modes for operating the
application. Mode zero is the receiving mode of the input
value from the host PC, mode one is the reverse mode of
the image, and mode two transmits the results to the host
PC. The user logic has two BRAMs as buffers to save the
original image and the resulting image. An overview of
the logic layout and data flow is presented in Fig. 5.

The SFR layout is shown in Fig. 6. Address 0x00 has
mode-select bits and an execution bit. Address 0x01 and

0x02 have input image sizes.

Fig. 5. Overview of the data flow between the host PC and the
user logic. This figure only focuses on the data flow of each
mode.

Fig. 6. A layout of the SFRs for the user logic. Mode bits
switch the user logic mode, and E is an execution bit.

41

We input an image, selected from the standard image
database19 (SIDBA), which was reduced down to
128 × 128 pixels. The input and resulting images are
shown in Fig. 7, from which we can see that the
application achieves the desired outcome.

5.2. An RBM logic

We synthesized an RBM using Xilinx Vivado HLS,
which is a high-level synthesis tool and implemented it
as user logic.

In this verification, the RBM was trained by the
MNIST20 dataset. The experimental conditions are as
follows:
• Visible unit: 784
• Hidden unit: 150
• Without HLS optimization options
• Integer bit width: 14 bits
• Fraction bit width: 18 bits

Table 1 shows the resource utilization report of the
RBM under these conditions. The target device was
Xilinx Kintex 7 evaluation board KC705 (XC7K325T).

Table 1. Resource utilization report.
Resource Utilization Available Utilization %
LUT 13202 203800 6.48
LUTRAM 580 64000 0.91
FF 16279 407600 3.99
BRAM 276.5 445 62.13
DSP 108 840 12.86
IO 5 500 1.00
GT 8 16 50.00
MMCM 2 10 20.00

We trained the RBM logic by the MNIST dataset on

25 epochs, and after the training we obtained the weights
of the RBM to verify the infrastructure. The weights are

shown in Fig. 8, and it can be observed that the
infrastructure works well in this application.

6. Conclusions and Future Works

In this study, we proposed and constructed an
infrastructure that connects a host PC and an FPGA via
PCI Express using the Xillybus, and controls the user
logic from software on the host PC. We have also created
APIs for infrastructure and published them on GitHub.
Furthermore, we implemented two applications using the
infrastructure to validate the infrastructure and confirm
that it works correctly. Using this system, the user does
not need to construct the communication and control part
by themselves, except for modules that require
verification. Verification of the hardware-oriented
system becomes possible more quickly.

In future work, first, we will implement an RBM with
resource-saving random number generators7 in the
hardware and verify its operation. Second, we will focus
on connecting external memory, such as an SDRAM, to
the infrastructure to enable the handling of larger network
parameters on the FPGA. In addition, because the user
logic is connected to the peripheral circuits only by the
AXI bus and AXI-Stream bus, we aim to create an
environment in which the user logic can be reconfigured
while the peripheral logics are running by utilizing the
partial configuration technology. With the availability of
this technology, logic verification and testing can be
achieved in a much more straightforward manner, and
with improved speed. The goal of this project is to create
an environment that enables easier and faster circuit
verification and experimentation.

(a) Original image (b) Result image

Fig. 7. Input and output images comparison.

Fig. 8. Visualized weight parameters calculated on the FPGA
infrastructure.

42

References

1. G.E. Hinton, S. Osindero, and Y.W. Teh, A fast learning
algorithm for deep belief nets, Neural computation, vol. 18,
no. 7, pp. 1527–1554, 2006.

2. S. Dargan, M. Kumar, M.R. Ayyagari, and G Kumar, A
survey of deep learning and its applications: a new
paradigm to machine learning, Archives of
Computational Methods in Engineering, vol. 27, no. 4,
pp.1071-1092, 2020.

3. NVIDIA, NVIDIA Tesla V100 GPU Architecture,
https://images.nvidia.com/content/volta-
architecture/pdf/volta-architecture-whitepaper.pdf, 2017,
access: August 16th , 2021.

4. N.P. Jouppi et al., In-datacenter performance analysis of
a tensor processing unit, Proceedings of the 44th Annual
International Symposium on Computer Architecture, vol.
45, no. 2, pp. 1-12, 2017.

5. S. Wang, and P. Kanwar, BFloat16: The secret to high
performance on Cloud TPUs,
https://cloud.google.com/blog/products/ai-machine-
learning/bfloat16-the-secret-to-high-performance-on-
cloud-tpus, 2019, accessed: August 19th , 2021.

6. S. Trimberger, A reprogrammable gate array and
applications, Proceedings of the IEEE, vol. 81, no. 7, pp.
1030-1041, 1993.

7. S. Hori, T. Morie, and H. Tamukoh, Restricted Boltzmann
machines without random number generators for efficient
digital hardware implementation, International
Conference on Artificial Neural Networks, Springer, pp.
391–398, 2016.

8. S. Hori, and H. Tamukoh, A random number generation
method for hardware implemented neural networks,
IEICE Tech. Rep., vol. 119, no. 78, SIS2019-1, pp. 1-4,
June 2019.

9. R. Salakhutdinov, G.E. Hinton, Deep Boltzmann machines,
Proceedings of the Twelth International Conference on
Artificial Intelligence and Statistics, vol. 5, pp. 448-455,
2009.

10. A. Fischer, and C. Igel, An introduction to restricted Boltz-
mann machines, Progress in Pattern Recognition, Image
Analysis, Computer Vision, and Applications, pp. 14–36,
Springer, 2012.

11. G.E. Hinton, A practical guide to training restricted
Boltzmann machines, Neural Networks: Tricks of the
Trade, pp. 599-619, 2012.

12. Sansei Hori, and Hakaru Tamukoh, A hardware-oriented
random number generation method and a verification
system for FPGA, Proc. 2021 Int. Conf. on Artificial Life
and Robotics (ICAROB 2021), pp. 122-125, 2021.

13. N. Zhang, S. Ding, J. Zhang, Y. Xue, An overview on
restricted Boltzmann machines, Neurocomputing, vol. 275,
pp. 1186-1199, 2018.

14. Xillybus PCIe IP, http://xillybus.com, access: December
14th , 2020.

15. xillybus_tools,
https://github.com/HoriThe3rd/xillybus_tools, accessed:
August 16th, 2021.

16. sfr_tools, https://github.com/HoriThe3rd/sfr_tools,
accessed: August 16th, 2021.

17. VIVADO High Level Design,
https://www.xilinx.com/products/design-
tools/vivado/high-level-design.html, accessed: August
22th, 2021.

18. Xilinx, https://www.xilinx.com, accessed: August 22th,
2021.

19. Standard image database, http://www.ess.ic.kanagawa-
it.ac.jp/app_images_j.html, access: August 16th, 2021.

20. Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E.
Howard, W. Hubbard, and LD. Jackel, Backpropagation
applied to handwritten ZIP code recognition, Neural Com-
putation, vol. 1, no. 4, pp. 541–551, 1989.

Authors Introduction

Mr. Sansei Hori

He received his Bachelor’s degree
from Tokyo University of
Agriculture and Technology, Japan in
2012. He received his Master’s
degree from Kyushu Institute of
Technology, Japan in 2014. He is
currently a Doctoral course student in
Kyushu Institute of Technology,
Japan.

Dr. Hakaru Tamukoh

He received his B.Eng. degree from
Miyazaki University, Japan, in 2001.
He received his M.Eng. and Ph.D.
degrees from Kyushu Institute of
Technology, Japan, in 2003 and 2006,
respectively. He was a postdoctoral
research fellow at Kyushu Institute of
Technology, from 2006 to 2007. He
was an assistant professor at Tokyo

University of Agriculture and Technology, from 2007 to
2013. He is currently a professor in the graduate school of
Life Science and Systems Engineering, Kyushu Institute of
Technology, Japan. His research interest includes digital
hardware design, soft-computing and home service robots.

https://dl.acm.org/doi/10.1162/neco.2006.18.7.1527
https://dl.acm.org/doi/10.1162/neco.2006.18.7.1527
https://dl.acm.org/doi/10.1162/neco.2006.18.7.1527
https://link.springer.com/article/10.1007/s11831-019-09344-w
https://link.springer.com/article/10.1007/s11831-019-09344-w
https://link.springer.com/article/10.1007/s11831-019-09344-w
https://link.springer.com/article/10.1007/s11831-019-09344-w
https://link.springer.com/article/10.1007/s11831-019-09344-w
https://dl.acm.org/doi/10.1145/3079856.3080246
https://dl.acm.org/doi/10.1145/3079856.3080246
https://dl.acm.org/doi/10.1145/3079856.3080246
https://dl.acm.org/doi/10.1145/3079856.3080246
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://ieeexplore.ieee.org/document/231341
https://ieeexplore.ieee.org/document/231341
https://ieeexplore.ieee.org/document/231341
https://www.springerprofessional.de/en/restricted-boltzmann-machines-without-random-number-generators-f/10625844
https://www.springerprofessional.de/en/restricted-boltzmann-machines-without-random-number-generators-f/10625844
https://www.springerprofessional.de/en/restricted-boltzmann-machines-without-random-number-generators-f/10625844
https://www.springerprofessional.de/en/restricted-boltzmann-machines-without-random-number-generators-f/10625844
https://www.springerprofessional.de/en/restricted-boltzmann-machines-without-random-number-generators-f/10625844
https://www.ieice.org/ken/paper/20190613W1ng/eng/
https://www.ieice.org/ken/paper/20190613W1ng/eng/
https://www.ieice.org/ken/paper/20190613W1ng/eng/
https://www.ieice.org/ken/paper/20190613W1ng/eng/
http://proceedings.mlr.press/v5/salakhutdinov09a
http://proceedings.mlr.press/v5/salakhutdinov09a
http://proceedings.mlr.press/v5/salakhutdinov09a
http://proceedings.mlr.press/v5/salakhutdinov09a
https://link.springer.com/chapter/10.1007/978-3-642-33275-3_2
https://link.springer.com/chapter/10.1007/978-3-642-33275-3_2
https://link.springer.com/chapter/10.1007/978-3-642-33275-3_2
https://link.springer.com/chapter/10.1007/978-3-642-33275-3_2
https://link.springer.com/chapter/10.1007/978-3-642-35289-8_32
https://link.springer.com/chapter/10.1007/978-3-642-35289-8_32
https://link.springer.com/chapter/10.1007/978-3-642-35289-8_32
https://alife-robotics.co.jp/members2021/icarob/data/html/data/OS/OS19/OS19-3.pdf
https://alife-robotics.co.jp/members2021/icarob/data/html/data/OS/OS19/OS19-3.pdf
https://alife-robotics.co.jp/members2021/icarob/data/html/data/OS/OS19/OS19-3.pdf
https://alife-robotics.co.jp/members2021/icarob/data/html/data/OS/OS19/OS19-3.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0925231217315849
https://www.sciencedirect.com/science/article/abs/pii/S0925231217315849
https://www.sciencedirect.com/science/article/abs/pii/S0925231217315849
http://www.xillybus.com/
http://www.xillybus.com/
https://github.com/HoriThe3rd/xillybus_tools
https://github.com/HoriThe3rd/xillybus_tools
https://github.com/HoriThe3rd/xillybus_tools
https://github.com/HoriThe3rd/sfr_tools
https://github.com/HoriThe3rd/sfr_tools
https://www.xilinx.com/products/design-tools/vivado/high-level-design.html
https://www.xilinx.com/products/design-tools/vivado/high-level-design.html
https://www.xilinx.com/products/design-tools/vivado/high-level-design.html
https://www.xilinx.com/products/design-tools/vivado/high-level-design.html
https://www.xilinx.com/
https://www.xilinx.com/
http://www.ess.ic.kanagawa-it.ac.jp/app_images_j.html
http://www.ess.ic.kanagawa-it.ac.jp/app_images_j.html
https://ieeexplore.ieee.org/document/6795724
https://ieeexplore.ieee.org/document/6795724
https://ieeexplore.ieee.org/document/6795724
https://ieeexplore.ieee.org/document/6795724

	ARTICLE INFO
	1. Introduction
	2. Restricted Boltzmann Machine
	3. Verification Infrastructure on FPGA
	3.1. The interface between the host PC and the FPGA
	3.2. User logic
	3.3. Internal bus and user logic interface
	3.4. Control registers
	3.5. AXI-Stream to AXI bridge
	3.6. Access sequences for SFRs via Xillybus
	3.7. A control method for the user logic

	4. APIs for Software on the Host PC
	4.1. Device files for Xillybus
	4.2. APIs for Xillybus communication

	5. Verification of the Infrastructure
	5.1. A simple image processing logic
	5.2. An RBM logic

	6. Conclusions and Future Works
	References

