
Corresponding author’s E-mail: bayu@earth.cs.miyazaki-u.ac.jp, kat@cs.miyazaki-u.ac.jp, kita@sun.ac.jp, yamaba@cs.miyazaki-u.ac.jp,
aburada@cs.miyazaki-u.ac.jp, oka@cs.miyazaki-u.ac.jp

43

Research Article

Detection of Blob and Feature Envy Smells in a Class Diagram
using Class's Features

Bayu Priyambadha1, Tetsuro Katayama1, Yoshihiro Kita2, Hisaaki Yamaba1, Kentaro Aburada1, Naonobu Okazaki1
1University of Miyazaki, 1-1 Gakuen-kibanadai nishi, Miyazaki, 889-2192, Japan
2Department of Information Security, Faculty of Information Systems, Siebold Campus, University of Nagasaki, 1-1-1 Manabino, Nagayo-cho, Nishi-
Sonogi-gun, Nagasaki, 851-2195, Japan

A R T I C LE IN FO

Article History

Received 20 November 2020
Accepted 10 August 2021

Keywords

Smell Detection
Class Diagram Smell
Design Quality
Software Design

A B S T RA C T
Measuring the quality of software design artifacts is difficult due to the limitation of information
in the design phase. The class diagram is one of the design artifacts produced during the design
phase. The syntactic and semantic information in the class is essential to consider in the measure-
ment process. Smell detection uses class-related information to detect the smell as an indicator of
a lack of quality. Several classifiers use all information related to the class to prove how informa-
tive it for the smell detection process. The smell types that are a concern in this research are Blob
and Feature Envy. The experiment using three classifiers (j48, Multi-Layer Perceptron, and Naïve
Bayes) confirms that Blob smell detection utilizes the information successfully. On the other hand,
Feature Envy still needs more elaboration. The average true positive rate by the classifiers is about
80.67%.

© 2022 The Author. Published by Sugisaka Masanori at ALife Robotics Corporation Ltd
This is an open access article distributed under the CC BY-NC 4.0 license
(http://creativecommons.org/li-censes/by-nc/4.0/).

1. Introduction

Managing the quality of the software is begun from the
earliest phase of software development. There-
fore, qualified software artifact resulting from
every phase of development is essential to maintain.
The excellent quality of the software artifact affects the
final result of the software product. Therefore, it is nec-
essary to measure the quality of the software artifact to
preserve the quality of software artifacts. The measure-
ment of software artifacts makes a judgment about the
best result of software product1 and the process improve-
ment in software development2. Often, the approach to
measuring the quality of software artifacts uses the metric

quality. Therefore, the measurement process results in
the value of the software quality level.

Many matrices can be used as a tool to measure the
quality of software artifacts. For example, is matrices that
related to the object-oriented approach in software devel-
opment. In an object-oriented approach, the quality
measurement is often done to the quality indicators of the
software artifacts, for example, complexity, cohesion,
and coupling3. Those three indicators are used to the class
as a fundamental object in the object-oriented approach.
Class is the smallest unit in the object-oriented system.
The software consists of many classes as the template or
blueprint of the objects. Every object represents the thing
that exists inner the software. The object has specific
characteristics and abilities. And, the object also can

SUGISAKA
MASANORI

Journal of Robotics, Networking and Artificial Life
Vol. 9(1); June (2022), pp. 43–48

SSN (Online): 2352-6386; ISSN (Print): 2405-9021
https://alife-robotics.org/jrnal.html

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://grp.isbn-international.org/search/piid_solr?keys=sugisaka
https://grp.isbn-international.org/search/piid_solr?keys=sugisaka
https://grp.isbn-international.org/search/piid_solr?keys=sugisaka

44

work together with other entities to accomplish the par-
ticular functionality of the software. Therefore, a good
design of the class as the representation of the object can
impact the overall software.

There are two points of view in assessing the class
quality, from the inner and outer of the class. First,
cohesion means the measurement from the inner of class
means measuring relationships between internal ele-
ments. Second, coupling means the measurement of the
class is based on the relationship of one class with an-
other class. Both indicators are essential to inform us
about the compactness of the class itself. External quality
attributes are related to the compactness of the class.
There are two examples of external quality attributes,
maintainability, and understandability. The more level of
compactness of the class, the class is easier to change and
understand. To change and understand the class, one only
has to consider the class itself.

Nowadays, several researchers are extensively dis-
cussing and evaluating software design problems, specif-
ically in an object-oriented approach. The thing related to
the design problem is the smell. The other term is "code
smell" 4, or "design flaw" 5. Generally, the existence of
smell indicates something misplaced in the software arti-
fact that can affect the quality attributes of the software.

Both the metric and the existence of smells indicate the
quality of software artifacts. The metric can be used as a
tool to measure the quality related to the quality attribute.
And, the existence of smell indicates there is a lack of
quality. The relationship between software metrics and
the presence of smells is an exciting thing to learn. Big-
onha et al. explain the usefulness of the software metric
threshold for detecting bad smells and fault prediction6.
This research expressed that there is a relation between
the metric and the presence of smell. The use of metrics
to detect smell is very effective by using specific thresh-
olds. Several bad smells have been proposed to detect,
for example, Large Class, Long Method, Data Class, Fea-
ture Envy, and Refused Bequest based on the metrics.
And, it also uses several matrices to detect the smell, for
example, DIT (Depth in Inheritance Tree), LCOM (Lack
of Cohesion between Methods), NOF (Number of Fields),
NOM (Number of Methods), NORM (Number of Over-
ridden Methods), NSC (Number of Children), NSF
(Number of Static Attributes), NSM (Number of Static
Methods), SIX (Specialization Index) and WMC

(Weighted Methods per Class). All matrices are the class
level's metric. All metrics are measured on the source
code of the software products. So, this research work as
the result of the implementation phase of software devel-
opment.

Smell detection is essential to know where the lack is
present in the part of the software. The position of smell
becomes a direction for the developer to make improve-
ments to the software artifact. The refactoring activity
can overcome the smell. Fowler defines the term refac-
toring as changing internal structure that is not changing
the external behavior of software4. Along with the soft-
ware evolution, the code is modified over time, and the
structure of the code will gradually disappear. The bad
smell is emerging, and the code quality is decaying as
stated in Lehman's Laws that said as the software evolves,
the structure is degraded1. Refactoring is the effort that
we have to pay to manage the structure of code.

Mostly smell detection and refactoring process is done
at the level of source code. The researcher is concerned
about the importance of shifting the work to the design
phase based on design artifacts. Start from the smell de-
tection in design7, then continue to the refactoring in de-
sign8,9. This effort is aimed at maintaining the quality of
the artifacts as early as possible. The challenge to do the
smell detection on the design artifact is the limitation of
information. Collecting the useable data to detect the
smell as much as we can on source code is hard. At the
design level, there is no source code. There is only the
model of the software that it wants to build. One of the
models as the product of the design is the class diagram.
The class diagram informs about the structure of the soft-
ware based on the class and their relationship. The possi-
bility to collect the information from the class diagram is
by understanding the syntactic and semantic information
that may exist10.

This research aims to collect the information based on
the syntax and semantic information that exists in the
Class Diagram. Then use the information to detect the
existence of the smell at the design artifact. This research
uses the inner information of class (related to cohesion)
to detect the smell. Two types of smell that are consid-
ered related to cohesion are Blob and Feature Envy, as
stated by Bigonha et al. that the LCOM metric is related
to the Feature Envy smell6. There are seven of infor-
mation that will be extracted from the class diagram,

45

number of attributes, number of methods, number of the
relation between method and attribute, number relation
between method and method, number relation between
attribute and attribute, the capacity of relation inner the
class and cohesion value. The Landfill dataset will com-
plement the seven information features from the class to
generate the dataset11. That information will be classified
using three classifiers, J48, Multi-Layer Perceptron
(MLP), and Naïve Bayes, and compare the result. This
research focuses on how the usefulness of the infor-
mation can be used to detect the smell.

Fig. 1. Process of Semantic Similarity Analysis of the Label
Name

The rest of the paper is organized as follows. In section
2, we present every data used in this research and how to
get those data. Section 3 describes how to label every
piece of data. Section 4 describes the whole process of
classification. Section 5 describes the result and discus-
sion. Then the last is the conclusion and future work in
section 6.

2. Seven Information

There is seven information as the candidate data to use in
smell detection. The data is related to one of the internal
quality attributes called cohesion. The data are number of
attributes, number of methods, number of the relation be-
tween method and attribute, number relation between
method and method, number relation between attribute
and attribute, the capacity of relation inner the class, and

cohesion. The technique to get those data is interesting to
discuss.

It is essential to consider the syntactic (structural) and
semantic information in collecting the data. Structural in-
formation is the information that we can directly read or
extract from the class diagram. And semantic information
is the information that needs a little processing (interpret
the meaning) to extract. In this research, the object of
study is the Class Diagram that resulted from using the
Visual Paradigm tools. Then, it will convert to the XML
file then called XML-based Class Diagram (Fig.1).

2.1. Number of Attributes

Two things may exist inner the class. The first is attrib-
utes. The attributes are the field used to save the data that
tells about the characteristics of the objects. Finding the
attributes in the class diagram is easy. The notation for
the attribute's name and the type of attribute is clearly de-
scribed in the class diagram. The information about
attributes is extracted from XML based class diagram.

2.2. Number of Methods

Methods describe the behavior or ability that the object
can perform to accomplish the functionality. The name,
return value type, and the method's parameters are also
clearly described in the class diagram. Collecting all in-
formation about the method is included in the syntaxis or
structural information.

2.3. Number of Relation between Method
Attribute

The relation between Method and Attribute (MAR) can
be counted by considering syntactic and semantic infor-
mation. The relation between method and attribute is de-
termined based on the similarity of type (syntaxis) and
the similarity of meaning (semantic) between method and
attribute. Fig.1 describes the process to measure the
closes meaning between the label name of method and
attribute. First, all label name is extracted from the
XML's based class diagram. Then separate the words in
the label of the name. After that, by using the semantic
similarity formula by Dijkman, the similarity of meaning
between the set of words is calculated12. If the label name
between attribute and method is semantically similar, it
will be considered a relation. Matrix relation is created to
make it easier.

46

2.4 Number of Relation between Method-Method
and Attribute-Attribute

Both the type of relation is called transitive relation or
indirect relation. That relation is determined based on the
direct relation between attribute and method. There are
two definitions to determine method-method (MMR) and
attribute-attribute relation (AAR). There will be a rela-
tion between methods if two methods are related to the
same attribute. Then, there will be a relation between at-
tributes if two attributes are associated with the same
method. This type of relation is included in the category
of semantic information. Fig. 2 shows the analogy of both
relations.

Fig. 2. The Description of Transitive Relation to Define the Re-
lation

2.5 Relation Capacity

The capacity of the network inspires the calculation of
the capacity or maximum relation. The maximum
relation is the maximum number of relations that possibly
exist in one area. Here, the class is assumed as the area of
the relation. That's why the capacity is the maximum
relation that can exist inner the class. The maximum
relation is calculated by using Eq. 1.

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = (𝑚𝑚+𝑎𝑎)((𝑚𝑚+𝑎𝑎)−1)

2
 (1)

Where 𝑚𝑚 is the number of methods and 𝑀𝑀 is the number
of attributes.

2.6. Cohesion value

The cohesion value calculation is inspired by the
calculation of the graph's cohesiveness by using the
network density approach. Because the form of a graph
is similar to the network graph, then the formula is
considered applicable to cohesion. The cohesion is
calculated by considering method-attribute relation,
method-method relation, and attribute-attribute relation.
The relation is direct relation and transitive relation. The
relations between method and attribute are divided by the

maximum relation (1) that possibly exists in one class.
The cohesion calculation is expressed as Eq. 2.

𝐶𝐶𝑀𝑀ℎ𝑀𝑀𝑒𝑒𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀+𝑀𝑀𝑀𝑀𝑀𝑀+𝑀𝑀𝑀𝑀𝑀𝑀

𝑀𝑀𝑎𝑎𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
 (2)

3. Dataset

The Landfill dataset is a set of data managed by several
researchers from several countries. It consists of 243 in-
stances of five types of code smells identified from 20
open-source software projects11. In the Landfill dataset,
all classes containing bad smells are labeled based on the
type of smell.

Table 1. Representation of Dataset
No. Fields Type

1. MAR Numeric
2. MMR Numeric
3. AAR Numeric
4. Number of Attributes Numeric
5. Number of Methods Numeric
6. Capacity Numeric
7. Cohesion Numeric
8. Label Blob, Feature Envy, No Smell

This research dataset used to experiment is composed

of the seven information and the label of smell provided
by the Landfill dataset. The representation of the dataset
is described in Table 1. The main dataset is extracted
from six projects. The projects are jEdit, jHotDraw,
FreeMind, HSQLDB, aTunes, and ArgoUML. The
dataset consists of 300 data based on the smell class listed
by the Landfill dataset and the smell-free classes, then
used as training data, and also generated 49 data used for
testing data.

4. Classification

In this experiment, the process of detecting the smell will
use the classification method. The seven information col-
lected using the mechanism described in section 2 will be
used as the dataset. In addition, the dataset will combine
with the Landfill dataset to get the class label of data as
described in section 3. This research focuses on how the
usefulness of the information can be used to detect the
smell. Three classifiers were used in this research, j48,
Multi-Layer Perceptron, and Naive Bayes. The tool used
in this experiment is Weka as a Machine learning soft-
ware to solve data mining problems13. Dataset for
training and testing are covert to CSV file then import
into Weka tools. All classifiers are run by using a basic
configuration. Using a classifier is only the way to prove

47

how the dataset can be distinctive to the bad smell (Blob
and Feature Envy).

5. Result and Discussion

This section will explain the result of the experiment by
using the dataset and three classifiers. All is done by
using Weka tools. The recapitulation of the result is
described in Table 2.

J48 was able to classify (TPR) about 51% correctly.
The correct classify for every label of data is, for Blob
data is 94.7%, Feature Envy data is 25%, and No data is
22.2%. All labels of data can be recognized using this
approach. MLP was able to classify 51% of the data
correctly.

Table 2. Recap of The Testing Result

No. Classifier Blob Feature
Envy

No
Smell

True
Positive
Rate
(TPR)

1. J48 94.7% 25.5% 22.2% 51%
2. MLP 94.7% 0% 38.9% 51%
3. Naïve Bayes 52.6% 16.7% 55.6% 44.9%

Based on the label data, Blob data is 94.7%, Feature Envy
data is 0%, and No data is 38.9%. Therefore, the last
classifier, Naive Bayes, can classify 44.9% of data
correctly. Based on the label data, Blob data is 52.6%,
Feature Envy data is 16.7%, and No data is 55.6%.

Based on the result (Table 2), two classifiers have a
TPR value above 50%. The classifiers are j48 and MLP.
But, the MLP classifier cannot identify the Feature Envy
smell because the TPR for Feature Envy of MLP is 0%.
The j48 and Naive Bayes can detect the Feature Envy
smell even though with the low rate. All classifiers can
detect Blob smell with a TPR above 50%. The average
TPR for Blob smell is 80.67%. The characteristics
expressed in the dataset led to the identification of Blob
smell. However, the existing information is not enough
used to find both types of smells. More detailed data is
needed to improve the differentiation between the two
types of smells.

6. Conclusion and Future Work

The use of seven information as a class dataset to identify
the Blob smell in the class diagram is very effective. The
TPR above 50% proves the effectiveness. On the other
hand, it is not very good to use to identify the Feature
Envy smell. The dataset is not express the big differential
for Blob and Feature Envy. It makes the classifier hard to
identify each type of smell. Only j48 and Naive Bayes
can identify the Feature Envy but in the low of TPR.

To continue the research, it needs more exploration to
increase the differentiation between both smells. The
additional information of class maybe would be worth
finding to increase the richness of data. The other,
weighing every variable (MAR, MMR, AAR), is also
considered essential to sharpen the dataset's differences.

References
1. Sommerville, I., Software Engineering 9th Edition, Harlow,
England: Addison-Wesley Professional, 2010
2. Chidamber, S. R. & Kemerer, C. F. A Metrics Suite for Object
Oriented Design. IEEE Trans. Softw. Eng. 20, 1994 , pp. 476–
493.
3. Chowdhury, I. & Zulkernine, M. Using complexity, coupling,
and cohesion metrics as early indicators of vulnerabilities. J.
Syst. Archit. 57, 2011 , pp. 294–313.
4. Fowler, M. Refactoring Improving the Design of Existing
Code. (Pearson Education - Wesley, 2019).
5. Riel, A. J. Object-oriented Design Heuristics. Addison-
Wesley Publishing Company, 1996
6. Bigonha, M. A. S. et al. The usefulness of software metric
thresholds for detection of bad smells and fault prediction. Inf.
Softw. Technol. 115, 2019 , pp. 79–92
7. Sidhu, B. K., Singh, K. & Sharma, N. A Catalogue of Model
Smells and Refactoring Operations for Object-Oriented
Software. Proc. Int. Conf. Inven. Commun. Comput. Technol.
ICICCT 2018, 2018, pp. 313–319
doi:10.1109/ICICCT.2018.8473027
8. Misbhauddin, M. & Alshayeb, M. Model-driven refactoring
approaches: A comparison criteria. Proc. - African Conf. Softw.
Eng. Appl. Comput. ACSEAC 2012, 2012 , pp. 34–39
doi:10.1109/ACSEAC.2012.20
9. Dharmawan, T. & Rochimah, S. Systematic literature
review: Model refactoring. Proc. 2017 4th Int. Conf. Comput.
Appl. Inf. Process. Technol. CAIPT 2017, 2018 , pp. 1–5.
10. Priyambadha, B. et al. The Measurement of Class Cohesion
using Semantic Approach. Proc. Int. Conf. Artif. Life Robot. 25,
2020 , pp. 759–762.
11. Palomba, F. et al. Landfill: An open dataset of code smells
with public evaluation. in IEEE International Working
Conference on Mining Software Repositories vols 2015-Augus
(2015). , pp. 482–485.
12. Dijkman, R., Dumas, M., van Dongen, B., Käärik, R. &
Mendling, J. Similarity of business process models: Metrics and
evaluation. Inf. Syst. 36, 2011 , pp. 498–516
13. Hall, M. et al. The WEKA Data Mining Software : An
Update. SIGKDD Explor. 11, 2009 , pp. 10–18.

https://ieeexplore.ieee.org/document/295895
https://ieeexplore.ieee.org/document/295895
https://ieeexplore.ieee.org/document/295895
https://doi.org/10.1016/j.sysarc.2010.06.003
https://doi.org/10.1016/j.sysarc.2010.06.003
https://doi.org/10.1016/j.sysarc.2010.06.003
https://dl.acm.org/doi/10.5555/311424
https://dl.acm.org/doi/10.5555/311424
https://dl.acm.org/doi/10.5555/525171
https://dl.acm.org/doi/10.5555/525171
https://doi.org/10.1016/j.infsof.2019.08.005
https://doi.org/10.1016/j.infsof.2019.08.005
https://doi.org/10.1016/j.infsof.2019.08.005
https://doi.org/10.1109/ICICCT.2018.8473027
https://doi.org/10.1109/ICICCT.2018.8473027
https://doi.org/10.1109/ICICCT.2018.8473027
https://doi.org/10.1109/ICICCT.2018.8473027
https://doi.org/10.1109/ICICCT.2018.8473027
https://doi.org/10.1109/ACSEAC.2012.20
https://doi.org/10.1109/ACSEAC.2012.20
https://doi.org/10.1109/ACSEAC.2012.20
https://doi.org/10.1109/ACSEAC.2012.20
https://doi.org/10.1109/CAIPT.2017.8320730
https://doi.org/10.1109/CAIPT.2017.8320730
https://doi.org/10.1109/CAIPT.2017.8320730
https://alife-robotics.co.jp/LP/2020/OS14-4.htm
https://alife-robotics.co.jp/LP/2020/OS14-4.htm
https://alife-robotics.co.jp/LP/2020/OS14-4.htm
https://doi.org/10.1109/MSR.2015.69
https://doi.org/10.1109/MSR.2015.69
https://doi.org/10.1109/MSR.2015.69
https://doi.org/10.1109/MSR.2015.69
https://doi.org/10.1016/j.is.2010.09.006
https://doi.org/10.1016/j.is.2010.09.006
https://doi.org/10.1016/j.is.2010.09.006
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1145/1656274.1656278

48

Authors Introduction

Bayu Priyambadha

Bayu Priyambadha has received his
Bachelor of Computer from the 10 No-
vember Institute of Technology Sura-
baya. He also has got a Master of Com-
puter from 10 November Institute of
Technology Surabaya. He is a member
of the Software Engineering Research
Group (SERG) in the Faculty of Com-

puter Science, Brawijaya University, Indonesia. He is cur-
rently a doctoral student at the University of Miyazaki, Ja-
pan. His current research interest is Software Engineering,
Software Design, Software Quality, and Software Mainte-
nance.

Tetsuro Katayama

Tetsuro Katayama received a Ph.D. de-
gree in engineering from Kyushu Uni-
versity, Fukuoka, Japan, in 1996. From
1996 to 2000, he has been a Research
Associate at the Graduate School of In-
formation Science, Nara Institute of
Science and Technology, Japan. Since

2000 he has been an Associate Professor at the Faculty of
Engineering, Miyazaki University, Japan. He is currently a
Professor with the Faculty of Engineering, University of
Miyazaki, Japan. His research interests include software
testing and quality. He is a member of the IPSJ, IEICE, and
JSSST.

Yoshihiro Kita

Yoshihiro Kita received a Ph.D. degree
in systems engineering from the Univer-
sity of Miyazaki, Japan, in 2011. He is
currently an Associate Professor with
the Faculty of Information Systems,
University of Nagasaki, Japan. His re-
search interests include software testing
and biometrics authentication.

 Hisaaki Yamaba

Hisaaki Yamaba received the B.S. and
M.S. degrees in chemical engineering
from the Tokyo Institute of Technol-
ogy, Japan, in 1988 and 1990, respec-
tively, and the Ph D. degree in systems
engineering from the University of
Miyazaki, Japan in 2011. He is cur-
rently an Assistant Professor with the
Faculty of Engineering, University of

Miyazaki, Japan. His research interests include network se-
curity and user authentication. He is a member of SICE and
SCEJ.

Kentaro Aburada

Kentaro Aburada received the B.S.,
M.S, and Ph.D. degrees in computer
science and system engineering from
the University of Miyazaki, Japan, in
2003, 2005, and 2009, respectively.
He is currently an Associate Professor
with the Faculty of Engineering, Uni-
versity of Miyazaki, Japan. His re-
search interests include computer net-

works and security. He is a member of IPSJ and IEICE.

 Naonobu Okazaki
Naonobu Okazaki received his B.S,
M.S., and Ph.D. degrees in electrical
and communication engineering from
Tohoku University, Japan, in 1986,
1988 and 1992, respectively. He joined
the Information Technology Research
and Development Center, Mitsubishi
Electric Corporation in 1991. He is cur-
rently a Professor with the Faculty of

Engineering, University of Miyazaki since 2002. His re-
search interests include mobile network and network secu-
rity. He is a member of IPSJ, IEICE and IEEE.

	ARTICLE INFO
	1. Introduction
	2. Seven Information
	2.1. Number of Attributes
	2.2. Number of Methods
	2.3. Number of Relation between Method 　　　Attribute
	2.3. Number of Relation between Method 　　　Attribute
	2.4 Number of Relation between Method-Method and Attribute-Attribute
	2.5 Relation Capacity
	2.6. Cohesion value

	3. Dataset
	4. Classification
	5. Result and Discussion
	6. Conclusion and Future Work
	References

