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A B S  T RA C T  
Measuring the quality of software design artifacts is difficult due to the limitation of information 
in the design phase. The class diagram is one of the design artifacts produced during the design 
phase. The syntactic and semantic information in the class is essential to consider in the measure-
ment process. Smell detection uses class-related information to detect the smell as an indicator of 
a lack of quality. Several classifiers use all information related to the class to prove how informa-
tive it for the smell detection process. The smell types that are a concern in this research are Blob 
and Feature Envy. The experiment using three classifiers (j48, Multi-Layer Perceptron, and Naïve 
Bayes) confirms that Blob smell detection utilizes the information successfully. On the other hand, 
Feature Envy still needs more elaboration. The average true positive rate by the classifiers is about 
80.67%. 

© 2022 The Author. Published by Sugisaka Masanori at ALife Robotics Corporation Ltd             
This is an open access article distributed under the CC BY-NC 4.0 license 
(http://creativecommons.org/li-censes/by-nc/4.0/). 

1. Introduction

Managing the quality of the software is begun from the 
earliest phase of software development. There-
fore, qualified software artifact resulting from
every phase of development is essential to maintain. 
The excellent quality of the software artifact affects the 
final result of the software product. Therefore, it is nec-
essary to measure the quality of the software artifact to 
preserve the quality of software artifacts. The measure-
ment of software artifacts makes a judgment about the 
best result of software product1 and the process improve-
ment in software development2. Often, the approach to 
measuring the quality of software artifacts uses the metric 

quality. Therefore, the measurement process results in 
the value of the software quality level. 

Many matrices can be used as a tool to measure the 
quality of software artifacts. For example, is matrices that 
related to the object-oriented approach in software devel-
opment. In an object-oriented approach, the quality 
measurement is often done to the quality indicators of the 
software artifacts, for example, complexity, cohesion, 
and coupling3. Those three indicators are used to the class 
as a fundamental object in the object-oriented approach. 
Class is the smallest unit in the object-oriented system. 
The software consists of many classes as the template or 
blueprint of the objects. Every object represents the thing 
that exists inner the software. The object has specific 
characteristics and abilities. And, the object also can 
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work together with other entities to accomplish the par-
ticular functionality of the software. Therefore, a good 
design of the class as the representation of the object can 
impact the overall software. 

There are two points of view in assessing the class 
quality, from the inner and outer of the class. First, 
cohesion means the measurement from the inner of class 
means measuring relationships between internal ele-
ments. Second, coupling means the measurement of the 
class is based on the relationship of one class with an-
other class. Both indicators are essential to inform us 
about the compactness of the class itself. External quality 
attributes are related to the compactness of the class. 
There are two examples of external quality attributes, 
maintainability, and understandability. The more level of 
compactness of the class, the class is easier to change and 
understand. To change and understand the class, one only 
has to consider the class itself. 

Nowadays, several researchers are extensively dis-
cussing and evaluating software design problems, specif-
ically in an object-oriented approach. The thing related to 
the design problem is the smell. The other term is "code 
smell" 4, or "design flaw" 5. Generally, the existence of 
smell indicates something misplaced in the software arti-
fact that can affect the quality attributes of the software.  

Both the metric and the existence of smells indicate the 
quality of software artifacts. The metric can be used as a 
tool to measure the quality related to the quality attribute. 
And, the existence of smell indicates there is a lack of 
quality. The relationship between software metrics and 
the presence of smells is an exciting thing to learn. Big-
onha et al. explain the usefulness of the software metric 
threshold for detecting bad smells and fault prediction6. 
This research expressed that there is a relation between 
the metric and the presence of smell. The use of metrics 
to detect smell is very effective by using specific thresh-
olds. Several bad smells have been proposed to detect, 
for example, Large Class, Long Method, Data Class, Fea-
ture Envy, and Refused Bequest based on the metrics. 
And, it also uses several matrices to detect the smell, for 
example, DIT (Depth in Inheritance Tree), LCOM (Lack 
of Cohesion between Methods), NOF (Number of Fields), 
NOM (Number of Methods), NORM (Number of Over-
ridden Methods), NSC (Number of Children), NSF 
(Number of Static Attributes), NSM (Number of Static 
Methods), SIX (Specialization Index) and WMC 

(Weighted Methods per Class). All matrices are the class 
level's metric. All metrics are measured on the source 
code of the software products. So, this research work as 
the result of the implementation phase of software devel-
opment.  

Smell detection is essential to know where the lack is 
present in the part of the software. The position of smell 
becomes a direction for the developer to make improve-
ments to the software artifact. The refactoring activity 
can overcome the smell. Fowler defines the term refac-
toring as changing internal structure that is not changing 
the external behavior of software4. Along with the soft-
ware evolution, the code is modified over time, and the 
structure of the code will gradually disappear. The bad 
smell is emerging, and the code quality is decaying as 
stated in Lehman's Laws that said as the software evolves, 
the structure is degraded1. Refactoring is the effort that 
we have to pay to manage the structure of code. 

Mostly smell detection and refactoring process is done 
at the level of source code. The researcher is concerned 
about the importance of shifting the work to the design 
phase based on design artifacts. Start from the smell de-
tection in design7, then continue to the refactoring in de-
sign8,9. This effort is aimed at maintaining the quality of 
the artifacts as early as possible. The challenge to do the 
smell detection on the design artifact is the limitation of 
information. Collecting the useable data to detect the 
smell as much as we can on source code is hard. At the 
design level, there is no source code. There is only the 
model of the software that it wants to build. One of the 
models as the product of the design is the class diagram. 
The class diagram informs about the structure of the soft-
ware based on the class and their relationship. The possi-
bility to collect the information from the class diagram is 
by understanding the syntactic and semantic information 
that may exist10.  

This research aims to collect the information based on 
the syntax and semantic information that exists in the 
Class Diagram. Then use the information to detect the 
existence of the smell at the design artifact. This research 
uses the inner information of class (related to cohesion) 
to detect the smell. Two types of smell that are consid-
ered related to cohesion are Blob and Feature Envy, as 
stated by Bigonha et al. that the LCOM metric is related 
to the Feature Envy smell6. There are seven of infor-
mation that will be extracted from the class diagram, 
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number of attributes, number of methods, number of the 
relation between method and attribute, number relation 
between method and method, number relation between 
attribute and attribute, the capacity of relation inner the 
class and cohesion value. The Landfill dataset will com-
plement the seven information features from the class to 
generate the dataset11. That information will be classified 
using three classifiers, J48, Multi-Layer Perceptron 
(MLP), and Naïve Bayes, and compare the result. This 
research focuses on how the usefulness of the infor-
mation can be used to detect the smell. 

 
Fig. 1. Process of Semantic Similarity Analysis of the Label 
Name 
 

The rest of the paper is organized as follows. In section 
2, we present every data used in this research and how to 
get those data. Section 3 describes how to label every 
piece of data. Section 4 describes the whole process of 
classification. Section 5 describes the result and discus-
sion. Then the last is the conclusion and future work in 
section 6. 

2. Seven Information  

There is seven information as the candidate data to use in 
smell detection. The data is related to one of the internal 
quality attributes called cohesion. The data are number of 
attributes, number of methods, number of the relation be-
tween method and attribute, number relation between 
method and method, number relation between attribute 
and attribute, the capacity of relation inner the class, and 

cohesion. The technique to get those data is interesting to 
discuss.  

It is essential to consider the syntactic (structural) and 
semantic information in collecting the data. Structural in-
formation is the information that we can directly read or 
extract from the class diagram. And semantic information 
is the information that needs a little processing (interpret 
the meaning) to extract. In this research, the object of 
study is the Class Diagram that resulted from using the 
Visual Paradigm tools. Then, it will convert to the XML 
file then called XML-based Class Diagram (Fig.1). 

2.1. Number of Attributes 

Two things may exist inner the class. The first is attrib-
utes. The attributes are the field used to save the data that 
tells about the characteristics of the objects. Finding the 
attributes in the class diagram is easy. The notation for 
the attribute's name and the type of attribute is clearly de-
scribed in the class diagram. The information about 
attributes is extracted from XML based class diagram. 

2.2. Number of Methods 

Methods describe the behavior or ability that the object 
can perform to accomplish the functionality. The name, 
return value type, and the method's parameters are also 
clearly described in the class diagram. Collecting all in-
formation about the method is included in the syntaxis or 
structural information. 

2.3. Number of Relation between Method    
Attribute 

The relation between Method and Attribute (MAR) can 
be counted by considering syntactic and semantic infor-
mation. The relation between method and attribute is de-
termined based on the similarity of type (syntaxis) and 
the similarity of meaning (semantic) between method and 
attribute. Fig.1 describes the process to measure the 
closes meaning between the label name of method and 
attribute. First, all label name is extracted from the 
XML's based class diagram. Then separate the words in 
the label of the name. After that, by using the semantic 
similarity formula by Dijkman, the similarity of meaning 
between the set of words is calculated12. If the label name 
between attribute and method is semantically similar, it 
will be considered a relation. Matrix relation is created to 
make it easier.  
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2.4 Number of Relation between Method-Method 
and Attribute-Attribute 

Both the type of relation is called transitive relation or 
indirect relation. That relation is determined based on the 
direct relation between attribute and method. There are 
two definitions to determine method-method (MMR) and 
attribute-attribute relation (AAR). There will be a rela-
tion between methods if two methods are related to the 
same attribute. Then, there will be a relation between at-
tributes if two attributes are associated with the same 
method. This type of relation is included in the category 
of semantic information. Fig. 2 shows the analogy of both 
relations. 

 
Fig. 2. The Description of Transitive Relation to Define the Re-
lation 

2.5 Relation Capacity 

The capacity of the network inspires the calculation of 
the capacity or maximum relation. The maximum 
relation is the maximum number of relations that possibly 
exist in one area. Here, the class is assumed as the area of 
the relation. That's why the capacity is the maximum 
relation that can exist inner the class. The maximum 
relation is calculated by using Eq. 1. 
 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  (𝑚𝑚+𝑎𝑎)((𝑚𝑚+𝑎𝑎)−1)

2
 (1) 

 
Where 𝑚𝑚 is the number of methods and 𝑀𝑀 is the number 
of attributes. 

2.6. Cohesion value 

The cohesion value calculation is inspired by the 
calculation of the graph's cohesiveness by using the 
network density approach. Because the form of a graph 
is similar to the network graph, then the formula is 
considered applicable to cohesion. The cohesion is 
calculated by considering method-attribute relation, 
method-method relation, and attribute-attribute relation. 
The relation is direct relation and transitive relation. The 
relations between method and attribute are divided by the 

maximum relation (1) that possibly exists in one class. 
The cohesion calculation is expressed as Eq. 2. 
 
𝐶𝐶𝑀𝑀ℎ𝑀𝑀𝑒𝑒𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀+𝑀𝑀𝑀𝑀𝑀𝑀+𝑀𝑀𝑀𝑀𝑀𝑀

𝑀𝑀𝑎𝑎𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
 (2) 

3. Dataset 

The Landfill dataset is a set of data managed by several 
researchers from several countries. It consists of 243 in-
stances of five types of code smells identified from 20 
open-source software projects11. In the Landfill dataset,  
all classes containing bad smells are labeled based on the 
type of smell.  

Table 1. Representation of Dataset 
No. Fields Type 

1. MAR Numeric 
2. MMR Numeric 
3. AAR Numeric 
4. Number of Attributes Numeric 
5. Number of Methods Numeric 
6. Capacity Numeric 
7. Cohesion Numeric 
8. Label Blob, Feature Envy, No Smell 

 
This research dataset used to experiment is composed 

of the seven information and the label of smell provided 
by the Landfill dataset. The representation of the dataset 
is described in Table 1. The main dataset is extracted 
from six projects. The projects are jEdit, jHotDraw, 
FreeMind, HSQLDB, aTunes, and ArgoUML. The 
dataset consists of 300 data based on the smell class listed 
by the Landfill dataset and the smell-free classes, then 
used as training data, and also generated 49 data used for 
testing data.  

4. Classification 

In this experiment, the process of detecting the smell will 
use the classification method. The seven information col-
lected using the mechanism described in section 2 will be 
used as the dataset. In addition, the dataset will combine 
with the Landfill dataset to get the class label of data as 
described in section 3. This research focuses on how the 
usefulness of the information can be used to detect the 
smell. Three classifiers were used in this research, j48, 
Multi-Layer Perceptron, and Naive Bayes. The tool used 
in this experiment is Weka as a Machine learning soft-
ware to solve data mining problems13. Dataset for 
training and testing are covert to CSV file then import 
into Weka tools. All classifiers are run by using a basic 
configuration. Using a classifier is only the way to prove 
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how the dataset can be distinctive to the bad smell (Blob 
and Feature Envy). 

5. Result and Discussion 

This section will explain the result of the experiment by 
using the dataset and three classifiers. All is done by 
using Weka tools. The recapitulation of the result is 
described in Table 2.  

J48 was able to classify (TPR) about 51% correctly. 
The correct classify for every label of data is, for Blob 
data is 94.7%, Feature Envy data is 25%, and No data is 
22.2%. All labels of data can be recognized using this 
approach. MLP was able to classify 51% of the data 
correctly. 

 
Table 2. Recap of The Testing Result  

No. Classifier Blob Feature 
Envy 

No 
Smell 

True 
Positive 
Rate 
(TPR) 

1. J48 94.7% 25.5% 22.2% 51% 
2. MLP 94.7% 0% 38.9% 51% 
3. Naïve Bayes 52.6% 16.7% 55.6% 44.9% 

 
Based on the label data, Blob data is 94.7%, Feature Envy 
data is 0%, and No data is 38.9%. Therefore, the last 
classifier, Naive Bayes, can classify 44.9% of data 
correctly. Based on the label data, Blob data is 52.6%, 
Feature Envy data is 16.7%, and No data is 55.6%. 

Based on the result (Table 2), two classifiers have a 
TPR value above 50%. The classifiers are j48 and MLP. 
But, the MLP classifier cannot identify the Feature Envy 
smell because the TPR for Feature Envy of MLP is 0%. 
The j48 and Naive Bayes can detect the Feature Envy 
smell even though with the low rate. All classifiers can 
detect Blob smell with a TPR above 50%. The average 
TPR for Blob smell is 80.67%. The characteristics 
expressed in the dataset led to the identification of Blob 
smell. However, the existing information is not enough 
used to find both types of smells. More detailed data is 
needed to improve the differentiation between the two 
types of smells. 

6. Conclusion and Future Work 

The use of seven information as a class dataset to identify 
the Blob smell in the class diagram is very effective. The 
TPR above 50% proves the effectiveness. On the other 
hand, it is not very good to use to identify the Feature 
Envy smell. The dataset is not express the big differential 
for Blob and Feature Envy. It makes the classifier hard to 
identify each type of smell. Only j48 and Naive Bayes 
can identify the Feature Envy but in the low of TPR.  

To continue the research, it needs more exploration to 
increase the differentiation between both smells. The 
additional information of class maybe would be worth 
finding to increase the richness of data. The other, 
weighing every variable (MAR, MMR, AAR), is also 
considered essential to sharpen the dataset's differences.  
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