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ABSTRA C T 
Improving the efficiency of fish feeding contributes to achieving sustainable expansion of the 
aquaculture industry. However, expert knowledge on feeding remains reliant on experience. This 
paper presents a new approach of applying digital transformation (DX) on such knowledge by 
measuring underwater currents induced by fishes as indicator of their hunger. A prototype sensor 
suite consisting of current sensors, cameras, and an inertial measurement unit (IMU) was 
constructed to measure the currents around the fish cage, measure the motion of the suite, and 
record fish activity, particularly during feeding. An initial experiment was performed in two fish 
cages during feeding activity. Current measurements were collected and analyzed together with 
the recorded videos to relate the changes in current to the feeding activities. Results suggest that 
the currents increase around when feeding was started continuously and decline to zero around 
when it was stopped. However, more data needs to be collected and analyzed for a better 
understanding of the relationship between the changes in current and fish activities so it can be 
used to optimize the feeding decisions of fish farmers. 

© 2022 The Author. Published by Sugisaka Masanori at ALife Robotics Corporation Ltd 
              This is an open access article distributed under the CC BY-NC 4.0 license 
(http://creativecommons.org/licenses/by-nc/4.0/). 

1. Introduction

While seafood consumption has been increasing every
year, capture fisheries production, facing issues of 
overfishing, has remained static with slight fluctuations 
in the past decades. Since early 1990s, the aquaculture 
industry has been expanding consistently to meet the 
rising demand worldwide, making up 46% of the global 
production in 2018 [1]. 

The problem arises in the industry’s sustainability. 
Unsustainable management of fish farms not only poses 
a threat to their surrounding aquatic environment but also 
to the health of the fish stocks [2,3,4]. One crucial issue 
is the need for efficient decision making in fish feeding. 
In many aquaculture operations, feeds make up a large 
portion of the production costs, accounting for as high as 

86.7% [5]. Poorly timed and excessive feeding leads to 
poor cost-efficiency in raising fish [6]. It was estimated 
that 8.26% of the supplied feed gets lost to the 
environment [7]. Costs expended on the uneaten feeds 
would not be translated into further growth of the fishes 
and subsequently into the increase in their value, 
therefore reducing the potential income that could be 
made. In addition, these feeds would sink to the bottom 
of the sea to decompose, releasing ammonia and 
phosphate, nutrients that accelerate the growth of harmful 
algal blooms in the surrounding environment [8]. 
Decomposition of both feeds and algal blooms would 
consume dissolved oxygen, depleting the supply for the 
fishes as a result. Such threat would lead to slower 
growth rates, poorer quality of harvest, or at worst, 
massive fish kills [8,9,10]. Not only the profitability of 
the farm operation would be limited, but fish farmers 
could even lose their investment as a result [3,6,8]. 
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Japan, where marine aquaculture comprises majority of 
the country's aquaculture production, is not exempted 
from these issues. Production volume has remained 
stagnant throughout the years, without significant 
increases. With increasing prices of feed and imported 
fish meal among other factors, income on fishing in 
marine aquaculture households have decreased in 2018, 
as of the latest report [11]. 

The practice of feeding in Japanese fish farms involves 
the use of feeding machines mounted on boats. Efficient 
feeding has usually been achieved with decisions made 
by expert farmers, who would start and stop the feeding 
operation upon their sound assessment of the fishes’ 
behavior. This would reduce the feed conversion rate, 
improving fish welfare and reducing costs [12]. In 
addition, there is a significant difference in the quality of 
the harvested fish fed based on expert and non-expert 
decisions. Such decision making remains to be an “art,” 
where prediction is still intuitive, subject to the expert’s 
experience, and unquantifiable by a unified standard 
[13,14].  

Digital transformation (DX), defined as the adoption of 
disruptive digital technologies to increase productivity, 
value creation and social welfare, has been embraced by 
an increasing number of industries, governments, and 
organizations around the world with the emergence of 
Industry 4.0 [15].  It has been seen as enabler of 
predictability, efficiency, and productivity by reducing 
operation costs and personnel, as well as increasing 
feeding efficiency [16,17]. DX of experts’ knowledge in 
feeding would help them improve their feeding decisions, 
but also those of less experienced farmers. This would 
not only improve the amount and quality of their harvest 
and consequently increase their income, but will also 
increase the supply of high-quality seafood, lower their 
prices, and at the same time minimize pollution in the 
farm environment.  

Especially with the recent advancements in artificial 
intelligence, intelligent feeding control has become one 
of main topics of current research efforts in aquaculture. 
Various methods have been developed to recognize and 
analyze fish feeding in water [12,18]. Applications vary 
from tracking fish movement to detecting feeds in water. 
Some of these methods feed the information collected 
into machine learning models to generate feeding 
decisions [6,14,19]. Different information technologies 
developed fall into three general categories: computer 

vision (CV), acoustic technologies, and sensors-based 
technologies. 

Recognizing fish feeding with computer vision has been 
widely used in aquaculture in recent years, as optical 
sensors and machine vision systems are becoming more 
power and sensitive, while becoming less expensive 
throughout the years [20]. However, a significant issue in 
the application of computer vision is the complexity of 
the aquaculture environments causing various 
degradation to images [21]. While some methods use 
near infrared to adapt to low lighting and turbid water, 
their resolution and accuracy need to be improved. 

Acoustic technologies overcome the problems of 
degradation brought by varying illumination and water 
turbidity conditions affecting the performance of 
computer vision, as sound propagates in water with 
minimal attenuation. However, each kind of method also 
encounter specific problems. The use of passive acoustics 
to detect feeding sounds are affected by ambient noise 
from aquaculture equipment and weather [22]. While 
tracking fish position and movement using with clarity 
and precision even in marine environments, equipment is 
relatively expensive [18,23].  

Various sensor-based technologies are used for monitor 
fish feeding. With biotelemetry, fishes are accurately 
tracked with inertial measurement unit (IMU) or depth 
sensors, with data transmitted acoustically [24]. However, 
this method is invasive, which may affect the welfare of 
the fish. Implanting trackers would also be difficult to do 
for thousands of fishes in a cage. The same problems 
apply to using electromyogram (EMG) transmitters, 
which classifies fish hunger states with high success [25]. 
On the other hand, measuring water quality using sensors 
for parameters such as dissolved oxygen and temperature 
are non-invasive [6,26]. Generating feeding decisions 
using these sensors had high success rates, as these 
measurements are related to fish hunger. However, these 
are also susceptible to other water quality parameters [18]. 

A measurement that has been barely explored for 
making fish feeding decisions is of underwater currents 
generated by fish movements. It has been studied that 
circular swimming patterns of fish schools such as 
salmon push water out of cages, inducing outward flow 
[27,28,29]. It is also known that farmed fishes tend to 
swim close to the surface when hungry, and swim at the 
deeper parts of the cage when satiated, as shown in Fig. 
1. By knowing the currents at different depths, we could 
gain better understanding of the behavior of fishes in a 
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feeding activity – the depths and speeds at which they are 
swimming, and of the decision-making process of an 
expert fish farmer. In turn these insights could be useful 
for optimizing the feeding control which could also help 
less-skilled farmers improve their feeding decisions.  

So far, a group of researchers have proposed a sensor 
system for monitoring various measurements in water, 
including fish displacement speeds using sensors sensing 
fish-generated flow at multiple depths [30]. These speed 
sensors were calibrated by current sensors placed outside 
the cage. All sensor data were then fused into feeding 
control decisions. Using gathered real-world 
measurements, they made simulations of feeding 
activities in cages using their system and minimized 
uneaten feeds in water. 

Our research revisits the approach of measuring 
underwater currents for fish feeding control in marine 
aquaculture farms. By measuring the currents around the 
fish cage at different depths during feeding activities, we 
can estimate their feeding behavior reliably at varying 
environment conditions. We can analyze the relationship 
of the changes in these measurements with the events in 
feeding activities, at which the expert farmers would 
change the amount of feeding. We can then determine the 
measurement changes that would optimize the feeding 
regimen, thus applying DX on the expert farmers’ 
knowledge in fish feeding. This paper discusses about the 
envisioned design of the sensor system, the development 
of the prototype sensor suite and the initial current 
measurement experiment in a fish farm using the said 
prototype. 

2. Sensor System Architecture 

In the envisioned system, a network of sensor nodes is 
placed around fish cages with diameters of up to 40 
meters and depths of up to 20 meters, as shown in Fig. 2. 
Each node consists of multiple current sensors measuring 
current velocities for every depth of choice. In addition 
to measuring currents, it also has water quality sensors 
(dissolved oxygen, temperature, conductivity, pH, etc.) at 
multiple depths. It has at least one underwater camera to 
observe the fish movements, especially during feeding. 
Each node is designed to have a capacity for energy-
harvesting– solar, wind, tidal, or other sources – so that 
it can operate continuously off-grid. A computer above 
surface performs corresponding calculations on the 
sensor readings to obtain the measurements before 
timestamping them.  

In each cage, sensor nodes communicate in a star Wi-Fi 
network, where one node is designated as the master and 
the rest as slaves. Slaves send their measurement data to 
the master, which may or may not have its own sensors 
for collecting measurements. Data sent to the master are 
transmitted either directly to the onsite farmer’s device, 
which is connected to the master, or to a super master, 
which sends these data to a cloud server via 3G, 4G or 
5G. 

In addition to collecting sensor data, the farmer’s 
devices can also send and access various data – fish 
information, feeding history, etc. – to and from the cloud 
server. In another cage, an automatic feeding machine is 
connected to the master which operates at the command 

from the cloud server, which calculates the timing and 
amount of feeding from the collected data. This machine 

 

Fig. 1.  Top-view concept of changes in underwater currents in 
relation to fish feeding behavior. More water flows out of the 
cage when more fish are feeding at surface (a) and less water 
flows when fishes go back to the deeper part of the cage (b). 

 

Fig. 2.  Design of a sensor system in a fish farm with multiple 
sensor nodes, consisting of various sensors, deployed in 
multiple fish cages, collecting data for the farmer on ship as 
well as for the fishing company during feeding activities. 
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can also send its status to the server so the farmer can 
perform maintenance on it. Finally, the fishing company 
office has access all to data from the farm through its 
connection to the cloud server. 

3. Sensor Suite for Initial Measurements 

3.1.  Sensor suite system design 

For the initial measurements, two custom-built current 
speed loggers were mounted on a metal frame at two 
different depths at which fishes were observed before, 
during, and after feeding. These sensors measure only 
one flow axis given their fixed mounting. An inertial 
measurement unit (IMU) logger was mounted closest to 
the current sensor of interest. This would measure 
movement of the frame caused by fish-induced currents. 
These sensors were remotely triggered by Bluetooth to 
start logging measurements before they were placed 
underwater for hours. Alongside the current sensors were 
underwater cameras for visual recording of fish activity, 

which were switched to operate before getting 
submerged underwater. These observations were used to 

analyze their activity at points of interest with significant 
changes in current measurements. Fig. 3a shows the setup 
of the initial experiment. 

Ideally, at least two sets of sensor units should be 
deployed so that the other will measure the current going 
towards the fish cage, which would be cancelled from the 
outgoing current. Due to time constraints, however, one 
set was constructed and used for the initial measurement. 
Two or more sets will be deployed for the next 
measurement campaigns. 

3.2. Custom-built current sensor 

3.2.1.  Components and operation 

Since initial measurements would be performed, we 
decided to develop our own current sensors for lower 
development costs. The sensor developed for this 
experiment was a modified propeller-type flow sensor 
originally intended for measuring water flow through 
water pipes, as shown in Fig. 3b. Its Hall-effect sensor 

generates pulses proportional to the magnetic propeller’s 
rotation.  

 

Fig. 3.  Design of the initial farm experiment using the prototype sensor suite consisting of current, camera, and IMU sensors (a). The 
current sensors (b) and the IMU sensor (c) were designed to perform and log measurements underwater during a feeding activity. 
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An Arduino microcontroller would count these pulses 
for a given period, obtain the average frequency 
throughout the period, and then calculate the current 
speed using a calibration coefficient. It would then add 
timestamping to the reading and store it in a microSD 
card with its datalogging shield with SD and RTC 
capability. A Bluetooth module was also connected so it 
could be triggered remotely by a computer to start and 
stop measurements.  

Each current sensor was powered by a 9-volt supply (six 
AA batteries in series) with a capacity of 2700 mAh. A 
power endurance test was made by allowing it to operate 
continuously while being powered by the batteries. 
Result showed that it can collect measurements reliably 
for around 22 hours. 

The flow sensor was not originally designed to be 
waterproof, and reinforcements were therefore made by 
permanently sealing its electronics enclosure and by 
replacing its original cable with a waterproof rubber 
molded cable. Other unit components were housed in an 
IP68 enclosure.  

The mounting for the sensors was a 4-meter aluminum 
structure with four legs to which the sensors were 
attached to. The sensors depth was adjustable by sliding 
them through the legs. For the initial and the succeeding 
experiments, it was decided to position the two sensors 
three meters apart. In the prototype, they were fixed at 
0.7 m and 3.7 m from the top of the frame, respectively. 
Each leg was made of three four-meter frames. A cross-
like reinforcement was attached at the center of the frame 
to minimize bending and to enable the mounting to 
withstand the underwater currents. 

3.2.2.  Flow sensor cross calibration 

For accurate measurements, the developed flow sensor 
was cross-calibrated with a digital clamp-on type flow 
sensor (Keyence FD-Q32C). Both sensors were 
connected to an elevated water source where flow was 
partially controlled, as velocity and flow rate were 
dependent on the height, and subsequently the volume, of 
the water in the container, as shown in Fig. 4. 

Calibration was done by correlating the pulse frequency 
to the speed of water through the custom sensor, which 
was calculated by measuring the flow rate through the 
digital sensor. This was calculated using the relationship 
between the flow rate and speed of a fluid through a pipe 
and the continuity equation, which is given in the 
following equation: 

  (1) 

In this equation, v is the water speed, A is the cross-
section area of the sensor pipe, and q is the flow rate. 
Subscripts F and DF denote the custom and the digital 
sensors, respectively. Regardless of the difference of the 
cross-section areas of the two sensors, that of the digital 
sensor is cancelled out in the equation. The constant at 
the right converts the units from flow rate (L/min) to 
speed (cm/s). 

To select the best averaging period to be used in 
measurements, three periods were selected for calibration 
– 1, 5, and 10 seconds. Readings at 1 second were found 
to be discrete as the microcontroller count discrete 
number of pulses per second. Range of readings from the 
digital sensor were classified as the discrete readings 
from the custom sensor. Readings using the 10-second 
configuration were more continuous. However, there 
were higher chances of averaging high and low sample 
values, which may not properly represent the actual mea-
surement. Using the 5-second period seemed to be a 
favorable configuration as there were perceived smaller 
chances of samples with large differences, while its 
readings were still continuous. This was therefore the 
selected configuration for the upcoming experiments. 

3.3. Underwater IMU sensor and cameras 

The IMU sensor was a Sparkfun 9DoF Razor IMU M0, 
a very compact microcontroller with an MPU-9250 IMU 
and a µSD card slot onboard. Its IMU consists of 
accelerometer, gyroscope, and magnetometer sensors, 

𝑣𝑣𝐹𝐹 =
𝑣𝑣𝐷𝐷𝐹𝐹𝐴𝐴𝐷𝐷𝐹𝐹
𝐴𝐴𝐹𝐹
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Fig. 4.  Calibration test setup of the current sensor where it is 
connected to a digital flow sensor as they both measure water 
flow from the container 
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and is therefore capable of measuring linear acceleration, 
angular rotation velocity, and magnetic field vectors. 
With a Real-Time Clock (RTC) attached, this board was 
able to timestamp its measurements before writing them 
to a 32 GB µSD card. Powered by a 1000-mAh lithium-
ion polymer (Li-Po) battery, it was enclosed in an IP68 
enclosure, as shown in Fig. 3c. Power endurance test 
result showed that this sensor could collect data for 
around 22 hours as well. 

Two GoPro cameras were mounted on the frame 
alongside the current sensors. Each had a 512 GB µSD 
card to be able to record as much fish activity as possible. 
Fully charged, each camera can capture videos for around 
80 minutes, around the same amount of time feeding is 
made. 

4. Initial fish farm current measurements 

4.1. Experiment overview 

On March 18, 2021, we performed the initial current 
measurement experiment at a fish farm located in Usuki 
City in Oita Prefecture. Measurements were made at two 
100 m2 square cages with depth of 7.5 meters while 
feeding operations were done by the farmer. These cages 
contained around 3500 yellowtail amberjack (Seriola 
lalandi) fishes, locally known as Hiramasa. The fishes 
had been raised for a year and each weighed around 3 
kilograms. Each feeding operation lasted around 80 
minutes. 

The sensors were powered on, closed, and triggered to 
record data before submerging them for measurement. As 
shown in Fig. 3a, the sensor frame was then mounted on 
one side of the fish cages. The cage frame on which the 
sensor frame was mounted on was elevated at 0.3 m 
above water. The sensors were therefore positioned at 
depths of 0.4 m and 3.4 m, respectively. This experiment 
provided insight for validating or improving the design 
of the proposed sensor system. 

4.2. Results and Discussion 

Due to human error, the IMU was left open before 
submerging in a trial measurement before the 
measurement of the target cages, permanently damaging 
it without having collected any data. As for the video 
recordings, due to insufficient battery power from trial 
recording, only the first half of the feeding at the first 
cage had underwater recordings. For the second cage, 
video recording above surface was taken instead. 

The measurement data was post-processed by 
calculating the moving average of the readings from the 
last 30 seconds of measurements. This is to smoothen the 
plot for easier understanding of the measurements. From 
this point throughout the discussion, the tern 
“measurements” and “readings” refer to the moving 
averages. Noted observations were marked on the plot 
according to the time they were recorded. The changes in 
measurements were also analyzed with the video 
recordings of fish activity at the time of the noted 
observations. It was noted in both measurements that the 
spikes before and after a series of zero readings indicate 
the time the sensors were deployed and recovered. 

In the first fish cage, feed was started to be given in 
small amounts at around 11:34, seven minutes after the 
deployment of sensor, to attract the fishes to the surface, 
and was dispensed continuously at around 11:43, nine 
minutes later, as shown in Fig. 5a. Before feeding began, 
video recordings showed no presence of fish at the 
surface, as shown in Fig. 6a. They were seen shoaling 
below, as seen from the second camera. At the start of 
feeding, measured current at the surface did not increase 
right away. Fishes started schooling and few started 
swimming to the surface only at around 11:36, as shown 
in Fig. 6b. The number of fish swimming to the surface 
continued increasing before the feeds started floating 
away from the cage, blurring the surface camera at 
around 11:42. Despite this observation, current readings 
did not indicate significant increase in current. 

Significant increase in surface current started at 11:43. 
At around this time, the fisherman also started dispensing 
feed to the cage continuously. It was also around this time 
that the fishes at 3.4 meters depth became significantly 
less visible. This could be attributed to the decrease in 
illumination due to the increased fish activity at the 
surface blocking more light, as well as to dispersion of 
light from splashing. At around 11:47, vigorous fish 
feeding was observed from the surface. This was also 
observed from the surface underwater camera, as shown 
in Fig. 6c, although with difficulty due to blurred water. 
This could be partially attributed to the single lens 
property of the cameras, therefore lacking the ability to 
adjust its focus to infinity. Movement from fishes at 
surface appear to be slightly faster than fishes at 3 meters 
below. From this point towards the end of the video, the 
visibility of fishes would back-and-forth increase and 
decrease. Due to insufficient battery power, the 
underwater cameras stopped recording at 12:09 (surface) 
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and 12:04 (3.4 m depth), about halfway of the feeding 
activity. 

Throughout the feeding, measurements at the surface 
were generally higher than those at 3.4 meters. The trend 
in measurements throughout the activity was generally 
uniform, with peak values ranging within 4-10 cm/s. Low 
feeding activity on that day was noted by the farmer. 
Current reading was at 4.51 cm/s when the fisherman 
stopped dispensing feeds at 12:56. It was noted that fishes 
were still swimming around the surface at that time. One 
minute later, measurements dropped to almost 0 cm/s, the 
same time it was noted that fishes were no longer visible 
from the surface, indicating that they swam back to the 
deeper part of the fish cage.  

In the second cage, the time gradual feeding started was 
not noted properly, as it conflicted with the time of sensor 
deployment. It could have begun sometime after 13:03, 
when the sensors were deployed, as indicated by the 
sensor readings, as shown in Fig. 5b. At the start of the 
video at around 13:10 (Fig. 7a), few fishes were 
swimming up during gradual feeding. Measurements 
remained low, up to 2.51 cm/s. At 13:17, while there was 
no increase in current yet, feeds started to disperse from 
the cage, as observed in the video. As shown in Fig. 7b, 
more fishes started swimming at the surface at 13:19, 
with even more splashing observed, and readings 

reaching over 4 cm/s. The fisherman switched the 
feeding machine to dispense continuously at 13:20. The 
fishes were observed to be actively swimming at the 
surface one minute later, with current readings exceeding 
6 cm/s. 

The measurements at 3.4 m depth in the second cage 
were also generally lower than those at 0.4 m depth. But 
unlike in the first cage, there was an increasing trend in 
the surface measurements at the second cage from, with 
a few drops throughout the continuous feeding. Current 
measurements peaked at 13:51, at 14:04, and at 14:09, 
exceeding 16 cm/s. Feeding was ended at 14:20, at which 
measurement was at around 4 cm/s. Reading eventually 
dropped to almost zero after around one minute, just a 
few moments away from sensor recovery. At around this 
time, surface of the cage became calm, as shown in Fig. 
7c. 

 

Fig. 5.  30-second moving average of current measurements at the first fish cage (a) and at the second cage (b). Feeding activity in both 
cages lasted for around 80 minutes, not including sensor deployment. 
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A similar observation for both feeding activities was 
that current measurements were at around 4 cm/s when 
feeding was stopped by the fisherman. Both gradually 
dropped to almost zero after around one minute. As for 
switching from gradual to continuous feeding, it is still 
difficult to determine the threshold since currents when 
continuous feeding started at different cages were 
different. However, it can be observed that increases 
were gradual and consistent, eventually exceeding 6 cm/s.  

 

 
 
 
 
 
 
 
 
 
 

 

Fig. 6.  Snapshots of video recordings at the first fish cage at the start of measurement (a), at the start of gradual feeding (b), and at 
continuous feeding (c). Feeding activity in both cages lasted for around 80 minutes, not including sensor deployment.  
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Based on the data, changes in current, especially at the 
surface, correspond to changes in fish behavior as 
observed by the farmer, although more data needs to be 
collected and to be studied further. 

5. Conclusion and future work 

This paper presented the development of a prototype 
sensor suite, consisting of modified flow for measuring 
water currents induced by fish movement. Flow sensors 
were modified and recalibrated to measure underwater 

currents. The IMU sensor was also developed for 
measuring movement of the mounting frame. Both kinds 
of sensors could record measurements reliably for at least 
22 hours. 

The sensors were deployed in the two fish cages for 
measurements during a feeding operation. Especially at 
the surface, changes in current outside the cages were 
observed to correspond to changes in fish behavior and 
appetite as observed by the farmer, prompting to start and 
stop feeding. However, more data needs to be collected 
to verify this observation. 

Future work also includes development of a network of 
sensor nodes as described in the system architecture 
using more robust current sensors. These are future 
research tasks towards implementing DX in fish feeding 
in marine aquaculture farms. 
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