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ABSTRA C T 
Emotion recognition is useful in many applications. Most methods available nowadays depend 
on facial features which are difficult to obtain from standard security cameras. Unlike traditional 
biometrics, gaits can be obtained noninvasively from afar. A novel method to perform gait data 
collection with real-time emotion induction was proposed. OptiTrack was used to capture 49 
participants walking circularly while watching emotion-induced videos on Microsoft HoloLens 
2. This is the first study that use real-time emotion induction technique in non-straight walking
path.. 
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1. Introduction

Emotion recognition and analysis have recently become 
very popular due to their useful applications in several 
scenarios such as improving the quality of human-robot 
interaction, evaluating customer satisfaction, detecting 
suspicious behaviors for crime prevention, assessing 
student engagement during online classes, and so forth. 
It can be used to prevent conflicts among groups of 
people by detecting when one or more people in a 
stressful conversation become upset. Appropriate 
personnel can respond and separate the person from the 
conversation. Emotional recognition and analysis can 
also be used in commercials, such as determining 
whether an advertisement elicits a positive emotion in 
people passing by. Many of these applications would 
improve the quality of life in modern days. 

Because of the popularity of human emotion analysis 
research, there is a specific research field called Affective 
Computing [1] that aims to teach computers to 
understand and generate human-like affects that can be 
applied to a variety of applications. Many affective 
computing applications have been proposed in recent 
years. Some are extremely useful in current situation, 
particularly for educational purpose. As most students are 
unable to attend on-site classes due to the coronavirus 
pandemic. Students who would like to practice their 
programming skills at home cannot access to face-to-face 
guidance from lecturers and thus cannot improve their 
skills as effectively as it should be in normal situation. 
By incorporating affective computing techniques into the 
online exercise program, the program can evaluate how 
the students perform in each assignment. If students do 
not perform well in any assignment, the cause might be 
they are feeling exhausted or unmotivated; the program 
can advise students to focus on their weak points in that 
lesson, and the program can interact with students using 
animated agents to make their emotions getting better so 
they can continue studying effectively and happily [2]. 
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Emotion prediction using human observers is a time-
consuming task and is not accurate enough to be used in 
reality. Many techniques for automatic emotion 
prediction have been proposed. Nevertheless, most of 
publicly available methods presently use facial 
expressions as input for analysis and prediction. Facial 
features perform very well in some situations but have 
some limitations, such as being difficult to obtain in 
crowded conditions and by normal security cameras. 
Furthermore, some subjects do not show intense 
emotions on their faces. Due to these limitations, facial 
feature-based emotional detection techniques work 
accurately in certain situations, such as when the subjects 
are facing forward and close to the camera. If face images 
cannot be clearly captured, other features are required to 
make emotion recognition and analysis applications more 
practical and ready for real-world uses. 
 
Human gaits and postures are the forms in which the 
human body moves and poses while walking or 
performing other activities. Gaits and postures can be 
observed from afar without the need for high-resolution 
photos or videos. Recording of gait and posture features 
does not tamper with the subjects' daily lives. These data 
can even be gathered without the subjects' awareness. 
Gait and posture recognition have been used successfully 
in a wide range of applications with high accuracies 
including human identification [3,4] human re-
identification [5], human age estimation and gender 
recognition [6,7]. As a result, as clearly proven by many 
previous research, human gait and posture are 
appropriate features for detecting human emotions              
[8,9,10,11,12,13,14,15,16,17,18].  
 
In this study, we proposed a method and environment for 
performing gait data collection using Microsoft 
HoloLens 2 to display the emotion-induced videos. Gait 
data were captured using OptiTrack motion capturing 
system. However, any other motion capture devices can 
be also used instead of OptiTrack, for instance, Vicon, 
Microsoft Kinect, Intel RealSense, or standard video 
cameras with pose-estimation software such as OpenPose. 
 

2. Related Works 

There are several studies about emotion recognition 
proposed during recent years due to the field popularity 

and usefulness. However, most of these works are based 
on facial expression. These studies provide accurate 
results for some applications but still have limitations in 
other real-world usages as mentioned in the introduction. 
There are fewer works which focused on emotion 
recognition using gaits and postures. 
 
We found a survey that investigated many studies about 
gait analysis [19]. They found that gait analysis can be 
used not only for identification of subjects but also for 
subjects’ current emotion prediction. They discovered 
that human walking in different emotions have different 
characteristics. By using these information, automatic 
emotion recognition can be performed. There are several 
advantages of using gaits compared with traditional 
biometrics such as facial features, speech features, 
physiological features etc. Gaits can be observed from far 
away without subjects’ awareness. Gaits are difficult to 
be imitated. Gaits can be obtained without subjects’ 
awareness. Because of these advantages, gaits are very 
effective expressions that can be used for automatic 
emotion recognition. Many types of devices can be used 
for gait data recording. For example, force plate can be 
used for recording velocity and pressure [8]. Infrared 
light barrier system also performs well for recording 
velocity data [8,20]. Motion capturing system e.g., Vicon 
can capture the coordinate data accurately using the 
markers attached on the body [9,10,11,12,21,22,23]. 
Microsoft Kinect is also another efficient tool that can 
capture human skeleton by processing the depth image 
with color image to predict the position of body joints [3, 
4,5,6,13,14,24]. Accelerometer sensor on wearable 
devices such as smartphones or smart watches can also 
record the movement data for gait analysis [15,16,18]. 
After gait data collection, there are several preprocessing 
steps that can be used. For instance, low pass Butterworth 
filter [23,25,26], sliding window Gaussian filtering [13, 
14]. Data transformation from time domain to others such 
as Discrete Fourier Transform [13,14,24] or Discrete 
Wavelet Transform are also widely used [27,28,29]. Gait 
features are categorized into Spatiotemporal Features 
such as stride length, velocity, step width, step length, 
and Kinematic Features such as coordinates data, joint 
angles, angular range of motion etc. Dimension 
reductions are also used such as Principal Component 
Analysis [30,31,32,33,34]. Finally, emotion recognition 
phase can be performed using many popular techniques, 
e.g., Multilayer Perceptrons [8], Naive Bayes [12,13,14], 
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Nearest Neighbors [12,35], Support Vector Machine [12, 
13,14,15,18], Decision Tree [15,18,35] etc. There are 
some interesting results from many studies they surveyed. 
For happiness, the subject step faster [17], strides are 
longer [36], arm movement increases [36], joint angle 
amplitude increases [9]. For sadness, the arm swing 
decreases [17], torso shape and limb shape are contracted 
[22], joint angles amplitudes reduce [9]. 
 
There are many gait analysis studies proposed in recent 
decades. Several applications can be achieved by 
analyzing human gaits. The following are some 
examples; human identification or re-identification [3,4, 
5], gender prediction [6,7], emotion prediction [8,19], 
mental illness prediction [20,21] etc. There are several 
aforementioned methods to collect gait data such as using 
force plate, light barrier, motion capturing system, video 
camera, accelerometer, and so forth. We focus only the 
methods that extract 3-dimensional coordinates, binary 
silhouette, and body parts angles as gait features since 
these gait features are sensitive to walking pattern. Most 
studies proposed nowadays used straight walking path in 
their experiments to achieve high quality gait data [8,9, 
10,11,13,14,18,20,21,24,25,26,33]. However, fewer 
studies used free-style walking path that the subjects can 
choose any walking pattern as they wanted instead of 
straight walking [3,4,5,6]. By developing methods for 
free-style walking data, opportunities for the proposed 
methods to be implemented in a real-world scenario 
which humans are walking without awareness of being 
observed in public spaces are increased because 
obtaining adequate straight walking data in a noisy 
environment is more difficult than obtaining free-style 
walking data. 
 
As we used Microsoft HoloLens 2 smart glasses to show 
the videos to each participant while he or she is walking, 
another issue needs to be concerned is that whether the 
gaits could be interfered by watching contents on smart 
glasses or not. Risk of adverse effect such as slips and 
trips are matter. There are some studies about this issue. 
For example, [37] investigated the performance of gaits 
while using head-worn display while walking. They 
conducted experiments using 12 participants to test that 
the subjects can walk effectively in multiple conditions 
while using head-worn display or not. They assessed the 
minimum foot clearance, required coefficient of friction, 
foot placement location around the obstacle, walking 

speed and obstacle crossing speed. They found that using 
head-worn display did not affect with level walking 
performance compared to using a paper list and baseline 
walking which used nothing. In obstacle crossing tasks, 
more conservative and more cautious strategy were 
selected when the subjects used the head-worn display, 
and the obstacle crossing speed decreased by 3% 
compared to the baseline. However, location of foot 
placement around the obstacle was not affected when 
using head-worn display. [38] and [39] also conducted 
experiments to examine the adverse impacts on human 
gaits when the subjects use head-worn display e.g., smart 
glasses and walk at the same time. In their experiments, 
20 participants including 10 males and 10 females 
walked on treadmill in 4 different conditions at their 
preferred walking speed. They asked the subjects to 
perform one single-task walking and three dual-task 
walking using different equipment to display the 
information to the subjects while walking. In dual-task 
walking, participants performed attention-demanded 
tasks on different display types. Attention-demanded 
tasks include Stroop test, categorizing, and arithmetic. 
Display types used in their experiments are paper-based, 
smartphones and smart glasses. When the subjects used 
paper-based display and smartphone, they used the head-
down posture whereas they used the head-up posture for 
single task walking and for smart glasses display. Motion 
capturing was done using Vicon motion capture system 
with 7 cameras. They found that using smart glasses to 
perform tasks while walking can have more impacts on 
gait performance such as stability when compared with 
using other types of display. Also, they found that smart 
glasses can disturb the control of gait variables. However, 
the participants were more unstable when using 
smartphone and paper-based system compared to when 
using smart glasses. 
 
According to these related studies, we decided to use 
Microsoft HoloLens 2 for displaying emotional videos to 
our participants while they are walking in the recording 
area even though there are possibilities that some adverse 
effects can be occurred such as walking stability when 
using smart glasses during walking, we coped with this 
issue by asking the participants to take one rehearsal walk 
in the walking area without wearing HoloLens 2 to make 
them familiar with the walking space and another 
rehearsal walk while wearing HoloLens 2 that displayed 
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nothing to make them familiar with walking while 
wearing smart glasses at the same time. 
 
For walking pattern, straight walking should result in 
cleaner gait data but has more limitations when 
implementing in real-world scenarios. On the other hand, 
walking freely without any path guidance could be too 
difficult for the subjects. Since they have to concentrate 
on the videos content showing on HoloLens 2 while 
walking, if they also need to determine the walking path 
at the same time, they cannot focus well on videos 
content and their gaits can be interfered. Therefore, we 
decided to use the lax circular walking path for our 
experiments. By walking circularly in clockwise or 
counter-clockwise direction without marking the path 
line on the floor, we can have both straight walking and 
non-straight walking data in one walking trial. 
 

3. Data Collection 

In most previous studies in the field of emotional 
recognition and analysis, participants were asked to walk 
in a straight line after watching emotional movies or 
asked to walk in a straight line while thinking about 
personal experiences. There are some issues with these 
settings. In cases where participants were asked to walk 
after watching emotional videos, it is possible that some 
participants do not feel the intended emotions toward the 
end of the walk, or some participants do not have the 
intended emotions at all after watching the videos. These 
can lead to inaccurate relationship between gaits and 
emotions. In case where participants were asked to feel 
certain ways using their personal experiences, it is also 
possible that some participants cannot recall their 
feelings well enough to reflect on their body movements. 
These causes can lead to faulty information. 
 
To eliminate those issues that lead to faulty information 
and inaccurate relationship between gaits and emotions, 
our experiments are designed so that participants are 
constantly incited with emotion-induced videos while 
walking. We used the latest smart glasses technology 
named Microsoft HoloLens 2 for showing videos to the 
subjects while they are walking. To the best of our 
knowledge, currently available studies have never used 
this kind of emotion induction method before. By using 
HoloLens 2 for showing videos, subjects can see the 
room environment and the videos at the same time. 

Because we show emotional videos to participants while 
walking, the results are closer to real-life situations when 
a subject seeing some events and feels some emotions 
because of those events. In other words, we attempted to 
simulate the real-time emotions of the participants by 
showing emotion-induced videos while they are walking. 
Moreover, intensity of induced emotions should be more 
consistent than conventional method that shows 
emotional videos to subjects before walking. Our 
proposed emotional gait data collection technique should 
be useful for advancement of emotion recognition 
research field. 

3.1.  Equipment for Data Collection 

Currently, there are two main types of motion capturing 
equipment: marker-less and marker-based devices. 
Marker-less devices are more convenient to use in real-
life situation because there is no need to attach any 
equipment to subject's body. Coordinates of body parts 
are calculated by image processing technology using 
depth data recorded by infrared camera together with 
RGB images from color camera. For marker-based type, 
several markers have to be attached to subject's body at 
the desired positions such as on the head, hand, elbow, 
and so forth. Marker-based device is more complex to 
setup because it requires several cameras to capture the 
infrared reflection from the markers attached to subject's 
body for reconstruction of markers coordinates in 3-
dimensional space. However, body tracking accuracy of 
marker-less system is lower than marker-based type since 
marker-less system predicts the position of each body 
part while marker-based type uses the actual position 
obtained from several cameras. 
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In this study, OptiTrack which is a famous marker-based 
motion capturing system were used for our data 
collection. We used the baseline marker set with 37 
markers which is the standard configuration for human 
skeleton tracking. With baseline marker set configuration, 
37 markers were attached to each subject's body. The 
names of markers are listed in Table 1, and the position 
of markers are shown in Figure 1. Sample image of 
OptiTrack installation is shown in Figure 2. 
 
 

 

3.2. Recording Environment 

We marked a rectangle on the floor to use as the walking 
area that can be captured by OptiTrack motion tracking 
system using the black tape as shown in Figure 3. 
Fourteen OptiTrack motion capture cameras were 

 
 

 
 
Fig. 1. Position of Front and Back Markers (Original Human 
Figure Source: dog012 on sketchfab.com *) 

 
 

Fig. 2. Two OptiTrack Flex 3 cameras were installed on one 
camera stand at different height levels 

 
 

Fig. 3. Rectangle Walking Area marked with Black Tape 
on the Floor 
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installed on 7 camera stands. That is, two cameras on 
each stand at different heights as shown in Figure 2. 
Seven camera stands were placed around the walking  
 
 

 
*  https://www.youtube.com/watch?v=4R9HpESkor8, Last Accessed: 
May 12, 2022 

 
area as illustrated in Figure 4. The size of the walking 
area is 2.9 meters by 3.64 meters. 
 

3.3. Materials for Data Collection 

We selected 3 videos as stimuli for emotion induction. 
These videos were shown to the subjects using  
HoloLens 2 while each subject is walking in the 
recording area. 
• Neutral Video: The nature landscape video from 

YouTube named Spectacular drone shots of Iowa 
corn fields uploaded by the YouTube user named 
The American Bazaar * 

• Negative Video: An emotional movie selected from 
LIRIS-ACCEDE database named Parafundit by 
Riccardo Melato 

• Positive Video: An emotional movie selected from 
LIRIS-ACCEDE database named Tears of steel by 
Ian Hubert and Ton Roosendaal 

Neutral video was selected from nature landscape videos 
on YouTube that does not induce any emotion. Positive 
videos and negative videos will be used for induction of 
happy emotion and sad emotion respectively. Negative 
and positive videos were selected from the public 
annotated movies database LIRIS-ACCEDE † published 
by [40]. 
 

† https://liris-accede.ec-lyon.fr/, Last Accessed: April 6, 2022 

Table 1.  List of OptiTrack Baseline Markers 

HeadTop 
HeadFront 
HeadSide 
BackTop 

Chest 

Back 
Left 

Right 

WaistFront 
Left 

Right 

WaistBack 
Left 

Right 

ShoulderBack 
Left 

Right 

ShoulderTop 
Left 

Right 

ElbowOut 
Left 

Right 

UpperArmHigh 
Left 

Right 

WristOut 
Left 

Right 

WristIn 
Left 

Right 

HandOut 
Left 

Right 

ThightFront 
Left 

Right 

KneeOut 
Left 

Right 

Shin 
Left 

Right 

AnkleOut 
Left 

Right 

ToeOut 
Left 

Right 

ToeIn 
Left 

Right 
 

 
 
 
 
 
 
 
 
 

 
 

Fig. 4. Size of Walking Area and Position of Recording 
Equipment (OptiTrack) 
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The LIRIS-ACCEDE database contains many creative 
commons movies and their emotional annotations. There 
are several movie collections with different properties 
published in LIRIS-ACCEDE database such as Discrete 
LIRIS-ACCEDE, Continuous LIRIS-ACCEDE, 
MediaEval 2015 Affective Impact of Movies, and so 
forth. In our study, we used the Continuous LIRIS-
ACCEDE collection that contains 30 movies and 
emotion annotations in Valence-Arousal dimension. 
Most movies contain both positive and negative valence 
in the same movie. We carefully selected one movie that 
has only positive valence for entire movie and one movie 
that has only negative valence for entire movie to make 
our walking trial to contain only one emotion in each trial. 
Sample plots of valence annotations from the movies in 
Continuous LIRIS-ACCEDE collection are shown in 
Figure 5, and plots of our selected movies i.e., negative 
movie and positive movie are illustrated in Figure 6. 

We also concerned about the length of each video since 
all participants will walk and watch the videos at the 
same time, so all videos we used are not exceed 15 
minutes length. Length of neutral video, negative video, 
and positive videos are 5:04, 13:10, and 12:14 minutes 
respectively. Audio of negative and positive videos 
contain music, sound effects, and conversations in 
English. Subjects can hear the sound from HoloLens 2 
build-in stereo speakers when they walk. Neutral Video 
does not have any sound to ensure that it will not induce 
any emotion. 

3.4. Methods for Data Collection 

Each participant was asked to answer the health 
questionnaire and signed the consent form in the 
beginning of the experiment. Questions in the health 
questionnaire are listed below. 
1. Do you have any neurological or mental disorders? 
2. Do you have a severe level of anxiety or depression? 
3. Do you have hearing impairment that cannot be 

corrected? 
4. Do you have any permanent disability or body injury 

that affects walking posture? 
5. Do you currently feel sick now? (e.g., fever, 

headache, stomachache etc.) 

 
 

Fig. 5. Valence Annotation of 3 Sample Movies 
 

 
 

 
 

Fig. 6. Valence Annotation of Selected Negative Movie 
(Parafundit) and Positive Movie (Tears of steel) 
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6. If you have any problem with your health condition, 
please describe. 

  
After each subject was confirmed to be healthy i.e., they 
could walk, watch, and listen normally, we instructed 
each participant to walk in circular pattern inside the 
marked rectangle space. Participants could choose the 
direction they want to walk between clockwise or 
counter-clockwise. During each walking trial, subjects 
could switch directions whenever they want. We asked 
each subject to walk in the recording area for 3 minutes 
without wearing HoloLens 2 to establish a subject's 
natural way of walking. The purpose of the first walking 
trial (Rehearsal Walk) is to make the subject feel familiar 
with the walking space. Next, each subject performed the 
second Rehearsal Walk by walking again for another 3 
minutes and wearing HoloLens 2 that did not show any 
content to make them feel familiar with walking while 
wearing HoloLens 2. As we found in related studies, if 
the participants never have experiences using smart 
glasses while walking before, gait performance can be 
unstable [37,38,39]. We attempted to cope with this 
problem by asking the subjects to take the rehearsal 
walks with and without HoloLens 2 before performing 
actual recording. 
 
Then, we showed Neutral Video on HoloLens 2 and 
asked each subject to walk and watch the video at the 
same time to capture Neutral Walk. Each subject started 
walking when the video started and stopped walking 
when the video ended. Positive Walk and Negative Walk 
were done using Positive Video and Negative Video from 

LIRIS-ACCEDE database as described in Section 3.3. 

These videos were shown on HoloLens 2 while each 
subject was walking using the same procedure with 
Neutral Walk. Additionally, after finishing Positive Walk, 
we asked the subject to go take 10 minutes break to reset 
their emotion back to normal before starting Negative 
Walk. The order of Negative Walk and Positive Walk 
was swapped for the next subject. That is, swapping 
between Neutral, Positive, Negative and Neutral, 
Negative, Positive. The entire process for data collection 
is shown in Figure 7. Note that we also asked each subject 
to answer the self-reported emotion questionnaire before 
and after walking for each video. The questions are as 
follows. 
• Please choose your current feeling: Happy, Sad, 

Neither (Not Sad and Not Happy) 
• How intense of your feeling: 1 (Very Little) to 5 

(Very Much) 

Sample images of a subject walking in circular pattern in 
the recording area while watching an emotion-induced 
video on HoloLens 2 is shown in Figure 8, and a photo 
of a subject wearing the OptiTrack Motion Capture Suit 
with 37 markers and HoloLens 2 is shown in Figure 9. 
 
 
 
 
 
 
 
 

 
 

Fig. 8. Sample of Walking Subject while Watching Video 
on HoloLens 2 

 
 

Fig. 7. Data Collection Process 
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4. Results and Discussion 

In this study, an emotional gait dataset has been collected. 
Each subject walked in non-straight walking path and 
watched 3 videos including Neutral Video, Negative 
Video and Positive Video during walking. In summary, 
we have total 147 walking trials in this dataset.  
 
An overview of our collected dataset is as follow. 
• Number of participants: 49 subjects (41 male, 8 

female) 
• Average age: 19.69 years 
• Standard deviation of age: 1.40 years 
• Average height: 168.49 centimeters 
• Standard deviation of height: 6.34 centimeters 
• Average weight: 58.88 kilograms  
• Standard deviation of weight: 10.84 kilograms 
 
As we swapped the order of videos shown to the subjects, 
the number of subjects watching negative video before 
positive video, and subjects watching positive video 
before negative video are almost balance as listed. 
• Neutral Video   Negative Video  Positive 

Video: 24 subjects 
• Neutral Video   Positive Video  Negative 

Video: 25 subjects 

According to the answers from self-reported emotion 
questionnaire after finished walking and watching each 
video, we have 44 sad walking trials, 44 happy walking 
trial, and 59 neither walking trials. Table 2 shows the 
numbers of subjects who felt happy, sad, and neither 
from the self-reported emotion questionnaire for each 
video stimulus. 
 
We analyzed each video stimulus including negative 
video, neutral video and positive video with its resulting 
reported emotion including happy, neither and sad. The 
comparison between expected emotion and reported 
emotion is illustrated in Figure 10. According to Figure 
10 and Table 2, the resulting emotion from each stimulus 
are as follows. 
• Negative Video: 13 subjects feel happy, 17 subjects 

feel neither, 19 subjects feel sad 
• Neutral Video: 19 subjects feel happy, 28 subjects 

feel neither, 2 subjects feel sad 
• Positive Video: 12 subjects feel happy, 14 subjects 

feel neither, 23 subjects feel sad 
 

From these results, not all subjects feel sad after watching 
negative video, and not all subjects feel happy after 
watching positive video. For neutral video, it should not 
elicit any emotion so the reported emotion after watching 
neutral video might come from other factors such as 
trying HoloLens 2 for the first time can make some 
subjects feel happy. 
 
We can imply from these results that, reported emotion 
of each subject is not always similar to the annotated 
emotion from video stimulus we showed. This could 

 
 
Fig. 9. A Subject Wearing HoloLens 2 and OptiTrack 
Motion Capture Suit with 37 Markers 

Table 2.  Comparison of Expected Emotion 
from Video Stimuli and Reported Emotion 
from Self-Reported Questionnaire 

Stimuli \ Reported 
Emotion Happy Neither Sad 

Negative Video 13 17 19 
Neutral Video 19 28 2 
Positive Video 12 14 23 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 10. Comparison of Subjects’ Feelings between 
Reported Emotion and Expected Emotion 
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happen because of many factors. For example, it is 
possible that some subjects have different sensitivity for 
feeling sad. In other word, seeing some stories can make 
some subjects feel very sad while some other subjects can 
feel little sad, neither sad nor happy, or even very happy 
because different people have different emotion 
perception. This reason also applied to positive video 
stimulus, even though the video was annotated as 
positive emotion, some subjects feel happy but other 
subjects can also feel the opposite emotion as there could 
be some components or some stories in the positive 
movie that trigger them to feel sad instead of happy as we 
expected them to feel. Last but not least, individual 
preferences can also have effects on reported emotion 
after watching video stimulus. For instance, some 
subjects who do not like action movies or animation 
movies can feel sad after watching positive stimulus if 
that stimulus is the kind of movies they do not like. Also, 
the music soundtracks or conversations in the movie can 
affect with the subjects' feeling. 
 
By performing real-time method for emotion induction 
using smart glasses i.e., Microsoft HoloLens 2 to display 
emotion induction videos to the participants while they 
are walking, we found that this type of emotion induction 
method is very interesting since it can simulate the 
situation when the subjects saw some stories happened so 
their gaits and postures are changed unconsciously. As 
we asked all subjects to answer the self-reported 
questionnaire after finished walking, we can ensure that 
this way of emotion induction can elicit subjects' emotion 
more consistent than conventional method that shows the 
video stimuli to the participants before walking. 
 
Especially, since the reported emotion which is the actual 
emotion that the subjects feel could be different from the 
emotion we expected the participants to feel i.e., 
annotated emotion of the videos, it is very important that 
we must ask the subject how they feel after watching our 
video stimuli and compare their reported emotion with 
our expected emotion. If the reported emotion is different 
from the expected emotion, we should use the reported 
emotion to label that walking trial instead. 
 

5. Conclusion 

In summary, we proposed a novel emotional gait data 
collection method that uses the different technique to 

induce human emotion while walking. Unlike 
conventional emotion induction method which shows the 
emotional video stimuli to the subjects before walking on 
a conventional display such as a television or a computer 
monitor, our method utilized the latest smart glasses 
technology named Microsoft HoloLens 2 to display the 
emotion induction videos to the participants while they 
are walking. By showing the stimuli on HoloLens 2, 
subjects can walk and watch the videos at the same time. 
This makes emotion induction more realistic as the real-
time emotion perception is simulated in our proposed 
method. Additionally, we used the non-straight walking 
path for the subjects to walk while watching the video 
stimuli. Non-straight walking path could result in noisier 
gait data than straight walking path, but it gives us more 
real walking posture as in the real-world scenarios. 
Moreover, annotated emotion of the stimuli could be 
much different from actual emotion reported by the 
subjects, it is highly recommended to always ask the 
subjects to report their actual feelings after walking. 
Finally, in this study, even we used OptiTrack motion 
capturing system to capture the gait data in 3-dimensional 
coordinates, it is not mandatory to use the marker-based 
system for gait data recording. Marker-less system such 
as Microsoft Kinect or standard video camera with pose-
estimation software can be also used to record human 
movement data for gait analysis. 
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