
Corresponding author’s E-mail:
171

Research Article

INT8 Activation Ternary or Binary Weights Networks: Unifying
Between INT8 and Lower-bit Width Quantization

Ninnart Fuengfusin1, Hakaru Tamukoh2
1Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-
0196, Japan
2Research Center for Neuromorphic AI Hardware, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4
Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0196, Japan

A R T I C LE IN FO

Article History

Received 15 December 2021
Accepted 01 July 2022

Keywords

Quantization
Image recognition
Model compression

ABSTRA C T
This paper proposes ternary or binary weights with 8-bit integer activation convolutional neural
networks. Our proposed model serves as the middle ground between 8-bit integer and lower than
8-bit precision quantized models. Our empirical experiments established that the conventional 1-
bit or 2-bit only-weight quantization methods (i.e., BinaryConnect and ternary weights network)
can be used jointly with the 8-bit integer activation quantization. We evaluate our model with the
VGG16-like model to operate with the CIFAR10 and CIFAR100 datasets. Our models show
competitive results to the general 32-bit floating point model.

© 2022 The Author. Published by Sugisaka Masanori at ALife Robotics Corporation Ltd
 This is an open access article distributed under the CC BY-NC 4.0 license
(http://creativecommons.org/licenses/by-nc/4.0/).

1. Introduction

The invention of residual networks [1] has drastically
improved the performances of neural networks (NNs);
these networks now far exceed human performances,
especially in image recognition tasks. However, NNs
require numerous parameters to perform well. When the
number of parameters increases, more computational
operations are required. This might prove to be
challenging when deploying these models to edge
devices that lack high computational capacities.

These problems have led to the emergence of several
research fields. One such field is quantization, which
converts the conventional 32-bit floating-point (FP32)
datatype into simpler datatypes, such as the fixed-point
datatype and integer datatype. Currently, the default
quantization technique supported by major deep learning
frameworks (i.e., PyTorch [2] and TensorFlow [3]) is the

8-bit integer (INT8) quantization [4]. INT8 quantization
has become the standard because INT8 datatypes and
operations are widely supported by vendors of central
processing units and graphics processing units. Therefore,
the INT8 quantized model can be used across devices. In
general, INT8 quantization transforms almost all FP32
parameters to INT8 via an affine transformation. This
conversion allows the quantized model to operate
primarily with INT8 operations, which are faster than
FP32 operations. For example, in the NVIDIA Ampere
architecture, NVIDIA A100 delivers approximately 32
times more INT8 operations per second compared with
FP32 operations [5]. Furthermore, INT8 reduces the
NN’s overall memory storage by a factor of four
compared with FP32.

INT8 quantization also positively affects FPGA
implementations. For example, when we constructed
FP32 and INT8 accumulation between two variables with
Xilinx Vitis HLS 2021.2 using the target board Xilinx

SUGISAKA
MASANORI

Journal of Robotics, Networking and Artificial Life
Vol. 9(2); September (2022), pp. 171–176

ISSN (Online):2352-6386; ISSN (Print):2405-9021
 https://alife-robotics.org/jrnal.html

https://grp.isbn-international.org/search/piid_solr?keys=sugisaka
http://creativecommons.org/licenses/by-nc/4.0/
https://grp.isbn-international.org/search/piid_solr?keys=sugisaka
https://grp.isbn-international.org/search/piid_solr?keys=sugisaka

172

Zynq UltraScale+ MPSoC ZCU102 at 100 MHz, we
found that the FP32 accumulation consumed 2-3 clock
cycles. In contrast, the INT8 accumulation was done in
less than 1 clock cycle. Furthermore, in terms of
hardware utilization, FP32 accumulation consumes 2
digital signal processing, 180 flip-flops, and 249 lookup
tables, whereas INT8 accumulation uses only 15 lookup
tables. This shows that INT8 operations provide
significantly lower latencies and less hardware utilization
than FP32 operations.

In some cases, we may consider reducing the bit
width to less than 8 bits. Several research studies have
shown that 1- or 2-bit quantization is possible [6,7] with
some reduction in the model performance. This low bit-
width quantization research can be categorized into two
categories: (i) only-weights quantization research and (ii)
weights and activation quantization research. In [8,9], we
proposed mixed precision weight networks (MPWNs)
that determine the model with the optimized layer
combinations between the floating-point, ternary, and
binary weight layers. In this case, our model’s ternary
and binary weights are categorized as only-weights
quantization. When the only-weight quantized model
was compared with the weights and activation quantized
models, it was found that the only-weight quantized
model outperformed the other models by a significant
margin. However, from our FPGA implementation from
[9], the only-weight quantized models suffered from
higher latency and hardware resource from the floating-
point feature maps accumulation.

To reduce the latency and hardware requirements of
the only-weight quantized models, we proposed an INT8
activation ternary or binary weights network (ITBWN).
ITBWN uses the same weight spaces as MPWN.
However, ITBWN aims to address the MPWN problems
of high latency and hardware resource utilization from
floating-point accumulations. ITBWN is based on both
the lower bit-width and INT8-based quantization
methods. ITBWN uses the INT8 quantization method to
quantize its activations and uses lower-bit-width method
to quantize its weights. The activation is quantized into
INT8, which migrates the floating-point to INT8
accumulations, involving faster and lower hardware
utilization. In [10], we proved that both INT8 and lower
bit-width quantization methods could be used jointly
with competitive performance to the floating-point model
using the CIFAR10. In this research, we have extended
our work in [10] by showing that these methods also

provide competitive performance in the CIFAR100
dataset.

2. Related Works

This section will cover two related research fields: INT8
and lower-bit quantization.

2.1. INT8 Quantization

The INT8 quantization research problem is framed as
follows: “How do we accurately approximate a floating-
point tensor with an INT8 tensor and several other
variables?” In [4], a floating-point tensor is approximated
using an affine transform with the floating-point scaling
factor S, an 8-bit unsigned integer (UINT8) zero-point
variable Z, and an INT8 tensor q, as shown in Eq. (1). S
and Z can be selected either as a vector with a channel
size of r (per-channel quantization) or as a scalar (per-
tensor quantization). In general, per-channel quantization
should provide better performances with more
parameters to approximate r.

The optimal 𝑆𝑆 and 𝑍𝑍 values can be found by tracking the
statistical information (i.e., the minimum and maximum
values) during either the training or inference. To further
reduce the complexity of this INT8 approximation, the
trained quantization thresholds (TQT) method [11]
proposed the removal of the zero-point variable Z, which
transformed Eq. (1) into Eq. (2). In Eq. (2), TQT designs
S as a scaler variable with the power-of-two quantization.
This replaces the floating-point multiplication with shift
operations between S and q.

In contrast, instead of using the statistical information,
TQT uses the training process with the straight-through
estimator [12] to determine S and the threshold values.
The threshold is used to clip the minimum and maximum
values of r before using Eq. (2). There are several TQT
implementations and one of them is Xilinx Brevitas [13].
Xilinx Brevitas provides an easy-to-use PyTorch
implementation of TQT.

𝑟𝑟 = 𝑆𝑆(𝑞𝑞 − 𝑍𝑍) (1)

𝑟𝑟 = 𝑆𝑆(𝑞𝑞) (2)

173

2.2. Lower-bit Quantization

BinaryConnect (BC) [6] and ternary weight networks
(TWN) [7] are only-weight and lower-bit quantization
methods. BC converts the weights 𝑤𝑤 into binary weights
𝑤𝑤𝑞𝑞 using Eq. (3).

To make this BC trainable with Eq. (3) which discretizes
the gradient to 𝑤𝑤, Eq. (4) is used to transfer the gradient
from the quantized weights to the floating-point weights.
Eq. (4) makes Eq. (3) the same as the identity function
during back-propagation.

TWN quantizes the weights 𝑤𝑤 into {– 𝑆𝑆, 0, 𝑆𝑆 } with Eq.
(5), where S and 𝛥𝛥 are both positive floating-point
variables. TWN applies Eq. (4) to make the model
trainable with Eq. (5), similar to the case for BC.

𝛥𝛥 is given in Eq. (6). Where 𝑬𝑬 is an expected value or
mean-average of |𝑤𝑤|.

𝑆𝑆 is given in Eq. (7). Eq. (7) is summarized as mean-
average of |𝑤𝑤| that have values more than 𝛥𝛥.

3. INT8 Activation Ternary or Binary Weights
Networks

In only-weights quantized models, such as BC and TWN,
the floating-point activations and binary {−1, 1} or
ternary weights {−1, 0, 1} can be multiplied using only
simple logic operations [9]. However, the feature maps
are still accumulated with complex floating-point
accumulations. The motivation for proposing the
ITBWN model is to further improve the only-weights
quantization by reducing the complexity of this floating-

point accumulation. This can be done by converting all
activation into INT8; therefore, the floating-point
accumulations were converted into INT8 accumulations.
The less complex INT8 datatype reduces the overall
latency from the accumulation. The INT8 methods are
based on approximating the floating-point tensors;
therefore, a well-behaved floating-point approximation
with the INT8 tensor should behave in the same way as
the floating-point tensor.

With this motivation, in ITBWN, we use the TQT,
BC, and TWN methods. ITBWN applies either TWN or
BC to quantize its weights; however, for its activations,
ITBWN uses the TQT INT8 quantization. Fig. 1 shows
an overview of the datatypes in a block of the ITBWN
model.

Fig. 1. Overview of the ITBWN datatypes in a basic building
block of VGG16. Here, a is the activation, w are the weights
or both weights and biases, and UINT8 represents the 8-bit

unsigned integer.

In this study, several modifications are applied to BC,
TWN, and TQT. For BC, we did not use the clip
functions to clip the weights to the [−1, 1] range. For
TWN, we did not use any scaling factor S, that is, we
assigned S = 1. For TQT, we used the default
implementation provided by Xilinx Brevitas, which has
minor differences with the TQT settings [14]. The
notable differences are that the Brevitas settings do not
use the power-of-two quantized scaling factor, and
Brevitas assigns a different initialization method to the
scale factor. Finally, we did not use the BC, TWN, or
TQT methods in the last layer, because these methods
directly affect the model’s performance.

4. Experimental Results and Discussion

In this section, we describe the experiments conducted
with the CIFAR10 and CIFAR100 datasets. The
CIFAR10 dataset consists of 10 classes, and each class

𝑤𝑤𝑞𝑞 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤) (3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑞𝑞

(4)

𝑤𝑤𝑞𝑞 = �
𝑆𝑆:𝑤𝑤 > 𝛥𝛥

0: |𝑤𝑤| ≤ 𝛥𝛥
−𝑆𝑆:𝑤𝑤 < −𝛥𝛥

(5)

𝛥𝛥 = 0.7 × 𝑬𝑬(|𝑤𝑤|) (6)

𝑆𝑆 = 𝑬𝑬𝒊𝒊∈{𝒊𝒊||𝑤𝑤𝑖𝑖|>𝛥𝛥 }(|𝑤𝑤𝑖𝑖|) (7)

174

contains 5,000 32 × 32 color training images and 1,000
test images. However, the CIFAR100 dataset contains
100 classes, and each class consists of 500 32 × 32 color
training images and 100 test images. With fewer images
per class and a higher number of classes than CIFAR10,
the CIFAR100 dataset was a more challenging
benchmark. In both experiments, we used the VGG16-
based model [15], and we modified the VGG16 model to
operate with the CIFAR10 and CIFAR100 datasets by
removing the first two fully connected layers and
adjusting the input and output of the neurons of the last
fully connected layer recordings to the dataset. In both
the CIFAR10 and CIFAR100 experiments, we set the
hyperparameters as shown in Table 1.

Table 1 Hyperparameters for VGG16 in the CIFAR10 and
CIFAR100 settings.

Hyper
Parameters

Value

Epoch 200
Batch size 256

Weight decay 0.0005
Learning rate 0.1

The images were normalized using the mean and
standard deviations of the red, green, and blue channels
of images in the training dataset. We performed data
augmentation using the following steps. During the
training, we zero-padded the image to the image’s
boundaries and randomly cropped back to the original
size. Then, each image was also randomly horizontally
flipped. The stochastic gradient descent with the
momentum was selected to optimize our models. Finally,
the learning rate was scheduled with Cosine annealing
[16].

We set the notations as follows: binary for BC with
TQT, ternary for TWN with TQT, int8 for TQT only, and
float for all the FP32 floating-point models. The
CIFAR10 and CIFAR100 test accuracies over the
training epochs are shown in Fig. 2 and Fig. 3,
respectively. The best CIFAR10 and CIFAR100 test
accuracies are shown in Table 2 and Table 3, respectively.

Fig. 2. CIFAR10 test accuracies of different methods as per

the training epoch.

Fig. 3. CIFAR100 test accuracies of different methods as per

the training epoch.

Table 2 CIFAR10’s best accuracy for the VGG16-like model
with and without quantization methods.

Model Test
Accuracy

binary 0.9269
ternary 0.9351

int8 0.9353
float 0.9389

Table 3 CIFAR100’s best accuracy for the VGG16-like model
with and without quantization methods.

Model Test
Accuracy

binary 0.7117
ternary 0.7195

int8 0.7403
float 0.7394

We had expected that an increase in the bit precision of
the model would improve the test accuracy. Under this

175

hypothesis, the float would provide the best test accuracy,
followed by int8, ternary, and binary, in that order. This
hypothesis was confirmed in the CIFAR10 experiment;
however, it failed to meet one case in the CIFAR100
experiment, in which int8 outperformed float by a minor
margin. We hypothesized that in the CIFAR100
experiment, int8 quantization might cause a suitable
degree of regularization compared
with binary, ternary, and float. binary and ternary quant
ization may have too strong regularization effect,
while float only has a regularization effect from weight
decay. Therefore, with the right degree of regularization
from both weight decay and int8 quantization,
the int8 model outperformed binary, ternary, and float.

5. Conclusion

We proposed ITBWN or a BC or TWN model with INT8
quantized activations. Our experiment shows that
ITBWN with ternary weights provides competitive
results for both the INT8-quantized and floating-point
models. Converting the floating-point activation into
INT8 with TQT or BC allowed the only-weight quantized
model to deploy without worrying about the hardware or
latency costs of floating-point accumulation.

In our future studies, we plan to extend the INT8
quantization-based method to cover quantization
methods with lower precisions, such as INT4, INT2, and
INT1. This would permit more weight space choices in
designing the models. These weight spaces enable
finding the best trade-offs between the performance and
latency. We would like to apply this quantization
technique to the dual steam VGG16 model [17], which
can operate in red–green–blue depth images. This allows
our model to operate in the robotic domain where depth
images may become necessary.

When deploying these models in a robot, which is a
hard real-time processing system, we would like to
incorporate the concept of models like [18] into our
system. This would allow small NNs or sub-NNs to be
detachable from the NN. This would allow us to select to
perform inference with a faster sub-NN or with the
original NN that has better performance. A sub-NN is a
part of an NN; therefore, quantizing a sub-NN will affect
the original NN. In our future studies, we would like to
investigate this dynamic between the sub-NN and
original NN using the quantization techniques.

Acknowledgement

This research is based on results obtained from a project,
JPNP16007, commissioned by the New Energy and
Industrial Technology Development Organization
(NEDO).

References

1. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” Proceedings of the IEEE
conference on computer vision and pattern recognition, pp.
770–778, 2016

2. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G.
Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et
al., “Pytorch: An imperative style, high-performance deep
learning library,” Advances in neural information
processing systems, vol. 32, 2019.

3. M. Abadi, “Tensorflow: learning functions at scale,” in
Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming, pp. 1–1, 2016.

4. B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard,
H. Adam, and D. Kalenichenko, “Quantization and
training of neural networks for efficient integer-
arithmetic-only inference,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp.
2704–2713, 2018.

5. NVIDIA A100 Tensor Core GPU Architecture, Accessed
May 04, 2022.

6. M. Courbariaux, Y. Bengio, and J.-P. David,
“Binaryconnect: Training deep neural networks with
binary weights during propagations,” Advances in neural
information processing systems, vol. 28, 2015.

7. F. Li, B. Zhang, and B. Liu, “Ternary weight networks,”
arXiv preprint arXiv:1605.04711, 2016.

8. N. Fuengfusin and H. Tamukoh, “Mixed precision weight
networks: Training neural networks with varied precision
weights,” in International Conference on Neural
Information Processing, pp. 614–623, Springer, 2018.

9. N. Fuengfusin and H. Tamukoh, “Mixed-precision
weights network for field-programmable gate array,” PloS
one, vol. 16, no. 5, p. e0251329, 2021.

10. N. Fuengfusin, and H. Tamukoh, “INT8 Activation
Ternary or Binary Weights Networks,” Proceedings of the
2022 International Conference on Artificial Life and
Robotics, OS15-1, 2022.

11. S. Jain, A. Gural, M. Wu, and C. Dick, “Trained
quantization thresholds for accurate and efficient fixed-
point inference of deep neural networks,” Proceedings of
Machine Learning and Systems, vol. 2, pp. 112–128, 2020.

12. Y. Bengio, N. L ́eonard, and A. Courville, “Estimating or
propagating gradients through stochastic neurons for
conditional computation,” arXiv preprint
arXiv:1308.3432, 2013.

13. A. Pappalardo. Xilinx/brevitas. Zenodo, 2021.
14. Cite to quantization techniques in

QuantIdentity(bit_width=8) and
QuantReLU(bit_width=8).

https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://dl.acm.org/doi/abs/10.1145/2951913.2976746
https://dl.acm.org/doi/abs/10.1145/2951913.2976746
https://dl.acm.org/doi/abs/10.1145/2951913.2976746
https://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://proceedings.neurips.cc/paper/2015/hash/3e15cc11f979ed25912dff5b0669f2cd-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/3e15cc11f979ed25912dff5b0669f2cd-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/3e15cc11f979ed25912dff5b0669f2cd-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/3e15cc11f979ed25912dff5b0669f2cd-Abstract.html
https://arxiv.org/abs/1605.04711
https://arxiv.org/abs/1605.04711
https://link.springer.com/chapter/10.1007/978-3-030-04179-3_54
https://link.springer.com/chapter/10.1007/978-3-030-04179-3_54
https://link.springer.com/chapter/10.1007/978-3-030-04179-3_54
https://link.springer.com/chapter/10.1007/978-3-030-04179-3_54
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0251329
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0251329
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0251329
https://alife-robotics.co.jp/
https://alife-robotics.co.jp/
https://alife-robotics.co.jp/
https://alife-robotics.co.jp/
https://proceedings.mlsys.org/paper/2020/hash/e2c420d928d4bf8ce0ff2ec19b371514-Abstract.html
https://proceedings.mlsys.org/paper/2020/hash/e2c420d928d4bf8ce0ff2ec19b371514-Abstract.html
https://proceedings.mlsys.org/paper/2020/hash/e2c420d928d4bf8ce0ff2ec19b371514-Abstract.html
https://proceedings.mlsys.org/paper/2020/hash/e2c420d928d4bf8ce0ff2ec19b371514-Abstract.html
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://doi.org/10.5281/zenodo.3333552
https://doi.org/10.5281/zenodo.3333552
https://github.com/Xilinx/brevitas/issues/370
https://github.com/Xilinx/brevitas/issues/370
https://github.com/Xilinx/brevitas/issues/370

176

15. K. Simonyan and A. Zisserman, “Very deep
convolutional networks for large-scale image recognition,”
arXiv preprint arXiv:1409.1556, 2014.

16. I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient
descent with warm restarts,” arXiv preprint
arXiv:1608.03983, 2016.

17. Y. Yoshimoto and H. Tamukoh, “Fpga implementation of
a binarized dual stream convolutional neural network for
service robots,” Journal of Robotics and Mechatronics,
vol. 33, no. 2, pp. 386–399, 2021.

18. N. Fuengfusin and H. Tamukoh, “A sub-model detachable
convolutional neural network,” Journal of Robotics,
Networking and Artificial Life, vol. 8, no. 1, pp. 52–55,
2021.

Authors Introduction

Dr. Ninnart Fuengfusin

He received his B.Eng. degree from
King Mongkut's University of
Technology Thonburi, Thailand, in
2016. He received his M.Eng. and
D.Eng degrees from Kyushu Institute
of Technology, Japan, in 2018 and
2021, respectively. Currently, he is a
post-doctoral researcher at the
Kyushu Institute of Technology,
Japan. His research interests include

deep learning, efficient neural network design, and digital
hardware design.

 Prof. Hakaru Tamukoh

He received the B.Eng. degree from
Miyazaki University, Japan, in 2001,
and the M.Eng. and Ph.D. degrees
from the Kyushu Institute of
Technology, Japan, in 2003 and
2006, respectively. He was a
Postdoctoral Research Fellow with
the Kyushu Institute of Technology,
from 2006 to 2007. He was an
Assistant Professor with the Tokyo

University of Agriculture and Technology, from 2007 to
2013. He is currently a Professor with the Graduate School
of Life Science and Systems Engineering, Kyushu Institute
of Technology. His research interests include digital
hardware design, soft-computing, and home-service
robots. He was the author of works that won the Best Paper
Award at IEEE/INNS IJCNN 2019, the Best Live
Demonstration Award at IEEE ISCAS 2019, and the Best
Paper Award at ICONIP 2013. He is a member of IEICE,
JNNS and IEEE.

https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1608.03983
https://www.jstage.jst.go.jp/article/jrobomech/33/2/33_386/_article/-char/ja/
https://www.jstage.jst.go.jp/article/jrobomech/33/2/33_386/_article/-char/ja/
https://www.jstage.jst.go.jp/article/jrobomech/33/2/33_386/_article/-char/ja/
https://www.jstage.jst.go.jp/article/jrobomech/33/2/33_386/_article/-char/ja/
https://www.atlantis-press.com/journals/jrnal/125957122
https://www.atlantis-press.com/journals/jrnal/125957122
https://www.atlantis-press.com/journals/jrnal/125957122
https://www.atlantis-press.com/journals/jrnal/125957122

	ARTICLE INFO
	1. Introduction
	2. Related Works
	2.1. INT8 Quantization
	2.2. Lower-bit Quantization

	3. INT8 Activation Ternary or Binary Weights Networks
	4. Experimental Results and Discussion
	5. Conclusion
	Acknowledgement
	References

