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ABSTRA C T  
This paper proposes ternary or binary weights with 8-bit integer activation convolutional neural 
networks. Our proposed model serves as the middle ground between 8-bit integer and lower than 
8-bit precision quantized models. Our empirical experiments established that the conventional 1-
bit or 2-bit only-weight quantization methods (i.e., BinaryConnect and ternary weights network) 
can be used jointly with the 8-bit integer activation quantization. We evaluate our model with the 
VGG16-like model to operate with the CIFAR10 and CIFAR100 datasets. Our models show
competitive results to the general 32-bit floating point model. 
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              This is an open access article distributed under the CC BY-NC 4.0 license 
(http://creativecommons.org/licenses/by-nc/4.0/). 

1. Introduction

The invention of residual networks [1] has drastically 
improved the performances of neural networks (NNs); 
these networks now far exceed human performances, 
especially in image recognition tasks. However, NNs 
require numerous parameters to perform well. When the 
number of parameters increases, more computational 
operations are required. This might prove to be 
challenging when deploying these models to edge 
devices that lack high computational capacities. 

These problems have led to the emergence of several 
research fields. One such field is quantization, which 
converts the conventional 32-bit floating-point (FP32) 
datatype into simpler datatypes, such as the fixed-point 
datatype and integer datatype. Currently, the default 
quantization technique supported by major deep learning 
frameworks (i.e., PyTorch [2] and TensorFlow [3]) is the 

8-bit integer (INT8) quantization [4]. INT8 quantization
has become the standard because INT8 datatypes and
operations are widely supported by vendors of central
processing units and graphics processing units. Therefore,
the INT8 quantized model can be used across devices. In
general, INT8 quantization transforms almost all FP32
parameters to INT8 via an affine transformation. This
conversion allows the quantized model to operate
primarily with INT8 operations, which are faster than
FP32 operations. For example, in the NVIDIA Ampere
architecture, NVIDIA A100 delivers approximately 32
times more INT8 operations per second compared with
FP32 operations [5]. Furthermore, INT8 reduces the
NN’s overall memory storage by a factor of four
compared with FP32.

INT8 quantization also positively affects FPGA 
implementations. For example, when we constructed 
FP32 and INT8 accumulation between two variables with 
Xilinx Vitis HLS 2021.2 using the target board Xilinx 
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Zynq UltraScale+ MPSoC ZCU102 at 100 MHz, we 
found that the FP32 accumulation consumed 2-3 clock 
cycles. In contrast, the INT8 accumulation was done in 
less than 1 clock cycle. Furthermore, in terms of 
hardware utilization, FP32 accumulation consumes 2 
digital signal processing, 180 flip-flops, and 249 lookup 
tables, whereas INT8 accumulation uses only 15 lookup 
tables. This shows that INT8 operations provide 
significantly lower latencies and less hardware utilization 
than FP32 operations. 

In some cases, we may consider reducing the bit 
width to less than 8 bits. Several research studies have 
shown that 1- or 2-bit quantization is possible [6,7] with 
some reduction in the model performance. This low bit-
width quantization research can be categorized into two 
categories: (i) only-weights quantization research and (ii) 
weights and activation quantization research. In [8,9], we 
proposed mixed precision weight networks (MPWNs) 
that determine the model with the optimized layer 
combinations between the floating-point, ternary, and 
binary weight layers. In this case, our model’s ternary 
and binary weights are categorized as only-weights 
quantization. When the only-weight quantized model 
was compared with the weights and activation quantized 
models, it was found that the only-weight quantized 
model outperformed the other models by a significant 
margin. However, from our FPGA implementation from 
[9], the only-weight quantized models suffered from 
higher latency and hardware resource from the floating-
point feature maps accumulation. 

To reduce the latency and hardware requirements of 
the only-weight quantized models, we proposed an INT8 
activation ternary or binary weights network (ITBWN). 
ITBWN uses the same weight spaces as MPWN. 
However, ITBWN aims to address the MPWN problems 
of high latency and hardware resource utilization from 
floating-point accumulations. ITBWN is based on both 
the lower bit-width and INT8-based quantization 
methods. ITBWN uses the INT8 quantization method to 
quantize its activations and uses lower-bit-width method 
to quantize its weights. The activation is quantized into 
INT8, which migrates the floating-point to INT8 
accumulations, involving faster and lower hardware 
utilization. In [10], we proved that both INT8 and lower 
bit-width quantization methods could be used jointly 
with competitive performance to the floating-point model 
using the CIFAR10. In this research, we have extended 
our work in [10] by showing that these methods also 

provide competitive performance in the CIFAR100 
dataset. 

2. Related Works 

This section will cover two related research fields: INT8 
and lower-bit quantization. 

2.1. INT8 Quantization 

The INT8 quantization research problem is framed as 
follows: “How do we accurately approximate a floating-
point tensor with an INT8 tensor and several other 
variables?” In [4], a floating-point tensor is approximated 
using an affine transform with the floating-point scaling 
factor S, an 8-bit unsigned integer (UINT8) zero-point 
variable Z, and an INT8 tensor q, as shown in Eq. (1). S 
and Z can be selected either as a vector with a channel 
size of r (per-channel quantization) or as a scalar (per-
tensor quantization). In general, per-channel quantization 
should provide better performances with more 
parameters to approximate r. 
 

 
The optimal 𝑆𝑆 and 𝑍𝑍 values can be found by tracking the 
statistical information (i.e., the minimum and maximum 
values) during either the training or inference. To further 
reduce the complexity of this INT8 approximation, the 
trained quantization thresholds (TQT) method [11] 
proposed the removal of the zero-point variable Z, which 
transformed Eq. (1) into Eq. (2). In Eq. (2), TQT designs 
S as a scaler variable with the power-of-two quantization. 
This replaces the floating-point multiplication with shift 
operations between S and q. 
 

 
In contrast, instead of using the statistical information, 
TQT uses the training process with the straight-through 
estimator [12] to determine S and the threshold values. 
The threshold is used to clip the minimum and maximum 
values of r before using Eq. (2). There are several TQT 
implementations and one of them is Xilinx Brevitas [13]. 
Xilinx Brevitas provides an easy-to-use PyTorch 
implementation of TQT. 

𝑟𝑟 = 𝑆𝑆(𝑞𝑞 − 𝑍𝑍)  (1) 

𝑟𝑟 = 𝑆𝑆(𝑞𝑞)  (2) 
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2.2. Lower-bit Quantization 

BinaryConnect (BC) [6] and ternary weight networks 
(TWN) [7] are only-weight and lower-bit quantization 
methods. BC converts the weights 𝑤𝑤 into binary weights 
𝑤𝑤𝑞𝑞  using Eq. (3). 

 
To make this BC trainable with Eq. (3) which discretizes 
the gradient to 𝑤𝑤, Eq. (4) is used to transfer the gradient 
from the quantized weights to the floating-point weights. 
Eq. (4) makes Eq. (3) the same as the identity function 
during back-propagation. 
 

 
TWN quantizes the weights 𝑤𝑤 into {– 𝑆𝑆, 0, 𝑆𝑆 } with Eq. 
(5), where S and 𝛥𝛥  are both positive floating-point 
variables. TWN applies Eq. (4) to make the model 
trainable with Eq. (5), similar to the case for BC. 
 

 
𝛥𝛥 is given in Eq. (6). Where 𝑬𝑬 is an expected value or 
mean-average of |𝑤𝑤|.  
 

 
𝑆𝑆 is given in Eq. (7). Eq. (7) is summarized as mean-
average of |𝑤𝑤| that have values more than 𝛥𝛥. 
 

 

3. INT8 Activation Ternary or Binary Weights 
Networks 

In only-weights quantized models, such as BC and TWN, 
the floating-point activations and binary {−1, 1} or 
ternary weights {−1, 0, 1} can be multiplied using only 
simple logic operations [9]. However, the feature maps 
are still accumulated with complex floating-point 
accumulations. The motivation for proposing the 
ITBWN model is to further improve the only-weights 
quantization by reducing the complexity of this floating-

point accumulation. This can be done by converting all 
activation into INT8; therefore, the floating-point 
accumulations were converted into INT8 accumulations. 
The less complex INT8 datatype reduces the overall 
latency from the accumulation. The INT8 methods are 
based on approximating the floating-point tensors; 
therefore, a well-behaved floating-point approximation 
with the INT8 tensor should behave in the same way as 
the floating-point tensor. 

With this motivation, in ITBWN, we use the TQT, 
BC, and TWN methods. ITBWN applies either TWN or 
BC to quantize its weights; however, for its activations, 
ITBWN uses the TQT INT8 quantization. Fig. 1 shows 
an overview of the datatypes in a block of the ITBWN 
model. 

 
Fig. 1. Overview of the ITBWN datatypes in a basic building 
block of VGG16. Here, a is the activation, w are the weights 
or both weights and biases, and UINT8 represents the 8-bit 

unsigned integer. 

In this study, several modifications are applied to BC, 
TWN, and TQT. For BC, we did not use the clip 
functions to clip the weights to the [−1, 1] range. For 
TWN, we did not use any scaling factor S, that is, we 
assigned S = 1. For TQT, we used the default 
implementation provided by Xilinx Brevitas, which has 
minor differences with the TQT settings [14]. The 
notable differences are that the Brevitas settings do not 
use the power-of-two quantized scaling factor, and 
Brevitas assigns a different initialization method to the 
scale factor. Finally, we did not use the BC, TWN, or 
TQT methods in the last layer, because these methods 
directly affect the model’s performance. 
 
4. Experimental Results and Discussion 

In this section, we describe the experiments conducted 
with the CIFAR10 and CIFAR100 datasets. The 
CIFAR10 dataset consists of 10 classes, and each class 

𝑤𝑤𝑞𝑞 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤)  (3) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤

=  
𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑞𝑞  

(4) 

𝑤𝑤𝑞𝑞 =  �
𝑆𝑆:𝑤𝑤 >  𝛥𝛥

0: |𝑤𝑤| ≤  𝛥𝛥
−𝑆𝑆:𝑤𝑤 <  −𝛥𝛥

 
 
(5) 

𝛥𝛥 = 0.7 × 𝑬𝑬(|𝑤𝑤|) (6) 

𝑆𝑆 = 𝑬𝑬𝒊𝒊∈{𝒊𝒊||𝑤𝑤𝑖𝑖|>𝛥𝛥 }(|𝑤𝑤𝑖𝑖|) (7) 
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contains 5,000 32 × 32 color training images and 1,000 
test images. However, the CIFAR100 dataset contains 
100 classes, and each class consists of 500 32 × 32 color 
training images and 100 test images. With fewer images 
per class and a higher number of classes than CIFAR10, 
the CIFAR100 dataset was a more challenging 
benchmark. In both experiments, we used the VGG16-
based model [15], and we modified the VGG16 model to 
operate with the CIFAR10 and CIFAR100 datasets by 
removing the first two fully connected layers and 
adjusting the input and output of the neurons of the last 
fully connected layer recordings to the dataset. In both 
the CIFAR10 and CIFAR100 experiments, we set the 
hyperparameters as shown in Table 1. 

Table 1 Hyperparameters for VGG16 in the CIFAR10 and 
CIFAR100 settings. 

Hyper 
Parameters 

Value 

Epoch 200 
Batch size 256 

Weight decay 0.0005 
Learning rate 0.1 

 
The images were normalized using the mean and 
standard deviations of the red, green, and blue channels 
of images in the training dataset. We performed data 
augmentation using the following steps. During the 
training, we zero-padded the image to the image’s 
boundaries and randomly cropped back to the original 
size. Then, each image was also randomly horizontally 
flipped. The stochastic gradient descent with the 
momentum was selected to optimize our models. Finally, 
the learning rate was scheduled with Cosine annealing 
[16]. 

We set the notations as follows: binary for BC with 
TQT, ternary for TWN with TQT, int8 for TQT only, and 
float for all the FP32 floating-point models. The 
CIFAR10 and CIFAR100 test accuracies over the 
training epochs are shown in Fig. 2 and Fig. 3, 
respectively. The best CIFAR10 and CIFAR100 test 
accuracies are shown in Table 2 and Table 3, respectively. 

 
Fig. 2. CIFAR10 test accuracies of different methods as per 

the training epoch. 

 
Fig. 3. CIFAR100 test accuracies of different methods as per 

the training epoch. 

Table 2 CIFAR10’s best accuracy for the VGG16-like model 
with and without quantization methods. 

Model Test 
Accuracy 

binary 0.9269 
ternary 0.9351 

int8 0.9353 
float 0.9389 

Table 3 CIFAR100’s best accuracy for the VGG16-like model 
with and without quantization methods. 

Model Test 
Accuracy 

binary 0.7117 
ternary 0.7195 

int8 0.7403 
float 0.7394 

 
We had expected that an increase in the bit precision of 
the model would improve the test accuracy. Under this 



  
 

175 
 
 
 
 
 
 

hypothesis, the float would provide the best test accuracy, 
followed by int8, ternary, and binary, in that order. This 
hypothesis was confirmed in the CIFAR10 experiment; 
however, it failed to meet one case in the CIFAR100 
experiment, in which int8 outperformed float by a minor 
margin. We hypothesized that in the CIFAR100 
experiment, int8 quantization might cause a suitable 
degree of regularization compared 
with binary, ternary, and float. binary and ternary quant
ization may have too strong regularization effect, 
while float only has a regularization effect from weight 
decay. Therefore, with the right degree of regularization 
from both weight decay and int8 quantization, 
the int8 model outperformed binary, ternary, and float. 
 
5. Conclusion 

We proposed ITBWN or a BC or TWN model with INT8 
quantized activations. Our experiment shows that 
ITBWN with ternary weights provides competitive 
results for both the INT8-quantized and floating-point 
models. Converting the floating-point activation into 
INT8 with TQT or BC allowed the only-weight quantized 
model to deploy without worrying about the hardware or 
latency costs of floating-point accumulation. 

In our future studies, we plan to extend the INT8 
quantization-based method to cover quantization 
methods with lower precisions, such as INT4, INT2, and 
INT1. This would permit more weight space choices in 
designing the models. These weight spaces enable 
finding the best trade-offs between the performance and 
latency. We would like to apply this quantization 
technique to the dual steam VGG16 model [17], which 
can operate in red–green–blue depth images. This allows 
our model to operate in the robotic domain where depth 
images may become necessary.  

When deploying these models in a robot, which is a 
hard real-time processing system, we would like to 
incorporate the concept of models like [18] into our 
system. This would allow small NNs or sub-NNs to be 
detachable from the NN. This would allow us to select to 
perform inference with a faster sub-NN or with the 
original NN that has better performance. A sub-NN is a 
part of an NN; therefore, quantizing a sub-NN will affect 
the original NN. In our future studies, we would like to 
investigate this dynamic between the sub-NN and 
original NN using the quantization techniques. 
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