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ABSTRA C T  
Less and less Japanese are working in the forestry sector. Due to this lack of workforce, dangerous 
tasks could be delegated to robots. In order to perform this mission, the latter need embedded 
localization and mapping systems. This paper discusses the implementation of a particle filter 
based SLAM solver on a dedicated mobile robot called SOMA, developed at Hayashi Laboratory. 
The proposed approach has been evaluated in a realistic forest simulation and the first results 
suggest that it could be used in real time 
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1. Introduction

In Japan, owing to the combination of aging workers and 
unattractivity, the forestry sector is facing a significant 
decrease in terms of workforce, while the demand is 
conversely increasing.1,2 In this tense context, mobile 
robots have been proposed to replace lacking humans, 
especially for hazardous jobs. The Hayashi Laboratory is 
building a dedicated prototype for this purpose. This 
robot, called SOMA,3 is based on the platform of an All-
Terrain Vehicle (ATV). Many additional sensors 
including odometers, GPS (Global Positioning System), 
IMU (Inertial Measurement Unit), RGB-D cameras and 
lidar have been attached to the structure. 

In mobile robotics, navigation is an essential topic to 
deal with, and field robots are not exceptions to the rule. 
For a long time, the several problems to solve in this 
context have been unified in the framework of 
Simultaneous Localization and Mapping (SLAM), but 
current applications mostly treat separately mapping and 

localization. The first one is performed offline and once 
for all, whereas the second one is carried out online. This 
method tends to be very efficient when the environment 
where the robot evolves remains unchanged. However, 
when it is frequently changing, this approach becomes 
inappropriate and online mapping, worthwhile. This is 
the reason why, forests being constantly transformed by 
exploitation, online SLAM is proposed in this article as 
the problematic to address for this specific application. 
 Numerous algorithms have been developed in this 
domain, but FastSLAM has the advantage of being able 
of handling multimodal beliefs, owing to its logic based 
on particle filters.4 This is the main reason why 
FastSLAM was selected to be implemented on SOMA. 
 This article is organized in three parts. The first one 
explains the realized implementation and the undertaken 
choices. Then, the simulation experiments and 
parameters are described. Finally, the results are 
presented and an analysis of them is performed, leading 
to the conclusion which reviews achievements and 
remaining goals to reach. 
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2. FastSLAM for Forestry Robot 

The core of the FastSLAM algorithm is a Rao-
Blackwellized particle filter and the environment is 
described with a feature map. The latter consists of the 
list of the locations of easy distinguishable elements 
called features or landmarks. In order to estimate the pose 
of the robot and the map at the same time, the particles 
used include, apart from a weight, a pose and a collection 
of Kalman filters. The latter store the position and 
associated uncertainty of features. 

Each time new sensory data becomes available, two 
steps are performed: prediction and correction, which are 
common to every classical Bayes filter used in robotics. 
During prediction step, the poses of the particles are 
changed by applying the captured motion of the real 
robot, corrupted with the modelled motion noise. Then, 
two different updates are applied during correction step. 
First, according to received observation and associated 
noise, the Kalman filters corresponding to features in the 
sensor visibility scope are updated for each particle and 
new filters are initialized for previously unseen 
landmarks, using Kalman equations. In addition, the 
weights of particles are updated in accordance with 
observation likelihood. 

 
Fig. 1. Steps of Fast SLAM algorithm 

 
The Figure 1 is illustrating this process. In this 

diagram, the real robot is represented by a red disk 
indicating its real position and a black line in front of it 
revealing its heading. Concerning the particles, they are 
depicted by green points with variable size, located at the 
position they contain. The bigger a particle, the higher its 
weight, the more probable it is to embody the true pose 
of the robot and the true map of the environment. The 
particle with the highest weight before the new iteration 
of the algorithm is highlighted in black. Finally, the blue 
crosses represent the real features, whereas the green 
crosses are the landmarks in the map of the most probable 
particle. The green circles around green crosses represent 
the uncertainty over the positions of features. 

Since this algorithm can be used in different 
situations, our implementation has to adjust to the forest 
environment particularities. One major parameter to set 

is the nature of landmarks. Here, the choice of trees 
seems obvious, due to their concentration and their easily 
identifiable shape. Moreover, specific motion and 
observation models also have to be chosen. Their 
description is the topic of the following sections. 

2.1. Motion 

The robot motion is captured through the odometry 
delivered by wheels encoders and the selected model 
breaks the movement in three steps: a first rotation, then 
a translation, and finally a second rotation. Each of them 
is supposed to be corrupted with linear gaussian noise 
(Eq. 1, 2 and 3). 
 

(1) 

 

(2) 

 

 (3) 

 
where 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿1, 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 and 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿2 are noisy values of first 
rotation, translation and second rotation respectively, 
𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿1�������� , 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿���������  and 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿2��������  are corresponding noiseless 
values, and 𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟, 𝑏𝑏𝑟𝑟𝑟𝑟𝑟𝑟, 𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟, 𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 are 
constants. 

2.2. Observation 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Clusters made from lidar pointcloud 
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Concerning observation, the range-bearing model was 
taken on, because the sensor uses to perceive the 
environment around the robot is a lidar. Consequently, 
each individual observation is composed of the distance 
and the azimuth between the feature and the robot, which 
defines coordinates in the moving polar reference frame 
attached to the robot. In order to get them for each tree in 
the visibility scope, the raw pointcloud has to be 
processed. First, the ground and the canopy are removed 
by clipping it in height. Then, 3D euclidian clustering is 
performed to locate trunks, turning their representation 
from discrete and noisy points into simple 
parallelepipeds (Fig. 2). Finally, the centers of gravity of 
the clusters are taken as the positions of the trees. The 
returned length of each laser ray is assumed to include 
linear gaussian noise. Therefore, given some 
approximations, the extracted coordinates of the trees 
follow the same noisy distribution (Eq. 4 and 5). 
 

     (4) 

 

(5) 

 
where 𝑑𝑑 and 𝜑𝜑 are the noisy values of distance and azimuth 
respectively, 𝑑̅𝑑  and 𝜑𝜑�  are the corresponding noiseless 
values, and 𝑎𝑎𝑑𝑑, 𝑏𝑏𝑑𝑑 , 𝑎𝑎𝜑𝜑 and 𝑏𝑏𝜑𝜑 are constants. 

2.3. Correspondences and map management 

The correspondence problem, which consists of 
associating each observation in reality with a feature in 
the map, can be tackled in various ways. The maximum 
likelihood approach has been chosen, as it is often used 
and has proven its efficiency. In FastSLAM, each particle 
having its own correspondences, a large set of different 
data associations cohabit throughout the experiment. 
This diversity tends to lead to better results. 

2.3.1.  Multiple observations 

A tree is rarely alone in the lidar visibility scope. Hence, 
since several trees are seen at the same time, observations 
are called multiple. Instead of decomposing these 
multiple observations into individual ones and executing 
successive updates for each of them, they are treated as a 
whole, by using a slightly modified Gale-Shapley 

algorithm.5 This choice prevents a common issue 
encountered using the usual splitting technique: wrong 
fusion of landmarks. Indeed, in this case, distinct features 
in reality can be linked to the same feature in the map. 
 For each observed tree, the likelihood toward each 
feature in the visibility scope is computed and ordered in 
a list. At the beginning, the first-ranked landmarks are 
associated with the corresponding tree. Then, if multiple 
observations share the same feature, the latter is only 
appaired with the most likely one, and the others are 
assigned to the following landmark in their list. This 
process is repeated until each tree differs from others on 
its linked feature. If the likelihood of the next landmark 
to be associated is not greater than some threshold or if a 
list comes to its end, a new feature is initialized. 

2.3.2.  Features deletion 

Sometimes, previously added features become orphaned, 
that is they do not correspond to any real tree. To prevent 
these features to stay in the map, their deletion is carried 
out together with correspondences establishment. This 
action is subject to a threshold and the presence of 
concerned landmarks in the lidar visibility scope. 
 
2.4. Particles handling 
 
The common particle deprivation issue of particle filters 
is counteracted by applying conditional resampling. This 
shrinking of diversity among particles is also limited by 
adding gaussian noise to the poses of resampled ones, at 
the same level as motion noise. 
 
3. Experiments 
 
A model of the SOMA robot, along with a realistic forest 
environment made of a 30 by 30 meters ground and 16 
pine trees have been created, with the aim of conducting 
simulation experiments (Fig. 3). The software used are 
Rviz and Gazebo, integrated with ROS. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Robot model in Gazebo environment 
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The motor noise experienced in reality is virtually 
emulated by a ROS node inserted between the steering 
controller and Gazebo. It consists of a linear gaussian 
noise added to linear and angular velocity commands 
respectively. 

During all experiments, the robot is manually 
operated to go straight from one side of the forest to the 
opposite one. The comparison of the accuracy and update 
rate of each simulation enables to evaluate how these 
measures are impacted by the number of particles and the 
number of trees. 

4. Discussion 

The accuracy of pose and map estimates has been 
evaluated with a simulation using 100 particles and 
realistic motion and observation noises. The Figure 4 
shows the current pose and map estimation after 42 
seconds of simulation. The same elements are 
represented as in Figure 1 and the same color code is used. 
Additionally, the inner space between the two dotted red 
circles defines the lidar visibility scope. 

 

Fig. 4. Display of pose and map estimates at time t = 42 s 
 
Some metrics have been used to measure the 

efficiency of the implementation. In the experimental 
conditions described above, the distance between the 
final real and estimated poses is 2.39 m, and the average 
distance between each tree and its best corresponding 
feature in the map is about 0.81 m (Table 1). Five trees 
over 16 are overrepresented since several landmarks lie 
around their locations, and one feature in the map is far 
away from closest trees, leaving it orphaned. 
Furthermore, an update rate of 1 Hz has been measured 
during this experiment. 

 

Final position error (m) 2.39 
Final map average error (m) 0.81 

Redundant features 6 
Orphan features 1 
Update rate (Hz) 1 

Table 1. Simulation quantitative results 

 As it can be seen on Figure 5, even though correct 
tracking of the robot is performed on the whole, an 
increasing distance between the estimated and real poses 
can be noticed. More precisely, considering the direction 
of movement, the estimate stays behind the real pose, 
accumulating late. The delay before taking new odometry 
data into account can explain some of this gap, but the 
main reason is most probably to be found in the poor 
estimation of the coordinates of the trees. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Display of pose and map estimates at different times 
 
Indeed, these locations are assumed to coincide with 

the centers of the clusters extracted from the lidar 
pointcloud. However, since each tree is only seen partly 
at one time, the former statement does not hold. Besides, 
the centers of the clusters are constantly changing based 
on the pose of the robot, breaking the fundamental static 
world assumption (Fig. 6). Since motion noise is much 
more significant than observation noise, this is the pose 
estimate and not the map one which bears the 
consequences of this issue. Indeed, the estimated pose is 
updated with the compensation of the virtual movement 
of trees, moving it in the opposite direction. Because the 
robot and the extracted centers of trees move in the same 
direction, the pose estimate tends to be late. To prevent 
this issue in the future, a circle pattern recognition should 
be applied to each cluster to get the real centers of the 
trees. 
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Fig. 6. Centers of clusters depending on the pose of the robot 

4.1. Effect of the number of particles 

The overall accuracy of the proposed approach does not 
show a substantial dependence with the number of 
particles used. Actually, only five particles seem to be 
enough to output a precise pose and map at the end of the 
experiment. Nevertheless, the update rate suffers from a 
too high number of particles (Table 2). Finally, the 
extension of the particles set does not alleviate the 
systematic shift detailed in the last section. 

 Accuracy Update rate 
Effect of increasing the 

number of particles 
None Decrease 

Table 2. Effect of the number of particles on accuracy and 
update rate 

4.2. Effect of the number of trees 

The late of pose estimate is more considerable when the 
robot is close to trees, as a smaller part of them is 
captured by the lidar and therefore the centers of the 
clusters are far from the centers of the trees. Thus, a high 
density of the forest lowers the accuracy. In addition, as 
a well-known issue when solving SLAM, a large number 
of landmarks tends to make data association harder, 
involving more frequent errors in this process. Regarding 
update rate, while the total number of trees does not have 
any impact on it, a denser forest induces a lower update 
rate, because only the features in the visibility scope are 
handled (Table 3). 
 

 Accuracy Update rate 
Effect of increasing the 

size of the forest 
Decrease None 

Effect of increasing the 
density of the forest 

Decrease Decrease 

Table 3. Effect of the number of trees on accuracy and update 
rate 

4.3. Future research 

A countermeasure should be taken in order to prevent the 
previously described issue regarding the late of pose 
estimation. With this in mind, performing a circle pattern 
recognition on each cluster can be considered as an 
effective remedy. 
 Even with randomization during the resampling step 
of FastSLAM, particles deprivation still tarnishes the 
results and can lead to failures. Since motion noise is 
surely dominating observation noise in this situation, 
using the mixture Monte-Carlo Localization (MCL) 
method,6 suitable for reducing deprivation in these cases, 
could be contemplated. This technique derives from the 
idea of dual MCL where the roles of motion and 
observation are inversed. The latter is used to set new 
particles and the former is used to update the weights of 
the particles. Dual MCL alone yields poor results, but 
combining classical and dual approaches with some ratio 
in mixture MCL significantly improves stability. 
 Finally, only simulations having been realized so far, 
real experiments should be conducted as well in order to 
compare the results and entirely assess the presented 
approach. 
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