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ABSTR AC T  
A driving roller arrangement of hemisphere is one of the important problems by omnidirectional 
sphere conveyance. In this research, the roller arrangement problem, viewed as an evaluation 
function, is thought of as mean of roller’s kinetic energy with respect to the sphere direction. 
Furthermore, theoretically, we calculate the evaluation function, and find the contact point such 
that the evaluated value is minimal. 
 
© 2022 The Author. Published by Sugisaka Masanori at ALife Robotics Corporation Ltd 
This is an open access article distributed under the CC BY-NC 4.0 license 
(http://creativecommons.org/licenses/by-nc/4.0/) 

 

1. Introduction 

    A sphere, one of the basic shapes of robots, is used 
not only as a multi-fingered fingertip mechanism for 
hand robots but also as an actuator transmission 
mechanism for omnidirectional movement and drive 
in mobile robots. Spheres are also used as driving 
rollers for omnidirectional movement mechanisms, 
and there are various arrangements, depending on the 
application of the movement mechanism. Figure1 
shows the roller contact type for the number of 
actuators (𝑁𝑁𝑤𝑤) per sphere. 
     Examples of mechanisms driven by two rollers 
include a power transmission mechanism by Wada et 
al. [1] (see Figure 1(a)), a mobile device using Ishida's 
Figure 1(b), and The abovementioned 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1   Type of roller arrangement for sphere mobile robot 
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mechanisms can be used for the roller of a wheelchair. 
The rollers are arranged on the equator, generate an 
angular velocity vector of sphere on the horizontal plane, 
and can move in all direction [3]. The angular velocity 
vector of the sphere has two- dimensional freedom. This 
situation is theoretically  
considered in [4]. 
   The ball holding mechanism [5] (see Figure 1(c)) is 
intended to transport the ball, and the roller is placed 
in the upper hemisphere to hold the ball by friction. 

We conducted roller arrangement problem of  
sphere conveyance by driving rollers as previous 
study[6]. 

In this research, in the case of omnidirectional 
movement, we define an evaluation function as mean 
of roller’s kinetic energy with respect to sphere 
direction angle, and we also derive the exact formula. 
Furthermore, theoretically, we find the contact point 
such that the evaluated value (mean of roller’s kinetic 
energy) is minimal. Additionally, we perform 
simulation and present energy distribution of several 
contact points on a sphere. 
    The remainder of this research is organized as follows. 
In Chapter 2, we calculate the exact evaluation value 
given by the integral of the kinetic energy in sphere 
direction. In Chapter 3, we conduct simulation on the 
evaluation value on the sphere. In Chapter 4, we give a 
summary and future issues. 
 
2. Derivation of theoretical evaluation function 
 
  In this Chapter, we calculate the omnidirectional 
energy integral of the driving rollers. 

As shown in Figure 2, The center 𝑶𝑶 of a sphere with 
radius r is fixed as the origin of the coordinate system 
𝛴𝛴 − 𝑥𝑥𝑥𝑥𝑥𝑥. The 𝑖𝑖th constraint roller (i = 1 or 2) is in point 
contact with the sphere at a position vector 𝑷𝑷𝒊𝒊 (𝑷𝑷𝟏𝟏 ≠ 𝑷𝑷𝟐𝟐). 
𝝎𝝎 denotes the angular velocity vector of the sphere. 
Because of 𝜼𝜼𝟏𝟏, 𝜼𝜼𝟐𝟐 ∈ 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬{𝑷𝑷𝟏𝟏,𝑷𝑷𝟐𝟐} (omnidirectional 
condition), 𝝎𝝎  is on span{𝑷𝑷𝟏𝟏,𝑷𝑷𝟐𝟐 }. Sphere direction 𝜑𝜑 
(0° ≤ 𝜑𝜑 < 360°) is the angle from 𝑥𝑥-axis and 𝜌𝜌 is the 
angle from 𝑥𝑥𝑥𝑥 -plane to 𝝎𝝎  . Now, given the sphere 
mobile velocity 𝑽𝑽 (the center velocity of sphere). 
 
2.1 Kinetic energy of the roller  
Consider two rollers (right cylinder) with radius 𝑅𝑅, mass 
𝑀𝑀, moment of inertia 𝐼𝐼, and roller’s angular velocity 𝜔𝜔𝑖𝑖 
The total kinetic energy of the rollers is given by Eq. (1). 

             𝐸𝐸 =  𝐼𝐼(𝜔𝜔12 + 𝜔𝜔2
2) (1)  

Where 

 
Figure 2   The sphere rotational motion by driving rollers at 𝑷𝑷𝒊𝒊 

and omnidirectional condition is 𝜼𝜼𝟏𝟏, 𝜼𝜼𝟐𝟐 ∈ 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬{𝑷𝑷𝟏𝟏,𝑷𝑷𝟐𝟐}. 
 

             𝐼𝐼 =
1
2
𝑀𝑀𝑅𝑅2 (2)  

Because that the sphere and roller engage with each 
other at 𝑷𝑷𝑖𝑖. 

‖𝝎𝝎 × 𝑷𝑷𝑖𝑖‖ = 𝑅𝑅𝜔𝜔𝑖𝑖 (3)  

Thus. 𝐸𝐸 is proportional with respect to sum of square two 
roller’s speed. 

             𝐸𝐸 =
𝑀𝑀
2

(‖𝝎𝝎 × 𝑷𝑷1‖2 + ‖𝝎𝝎 × 𝑷𝑷2‖2) (4)  

2.2 Mean of kinetic energy of rollers 
To evaluate the value for roller arrangement, we 
define the follows expressions. Eq. (5) presents the 
mean of kinetic energy by integrating the total kinetic 
energy of the rollers with respect to the direction 𝜑𝜑 
(0° ≤ 𝜑𝜑 ≤ 360°). 

𝐸𝐸𝑀𝑀 =
1

2𝜋𝜋
� 𝐸𝐸 𝑑𝑑𝜑𝜑
2𝜋𝜋

0
 (5)  

(i) Case of arbitrary roller arrangement 
 
Quoting Equation (12) of Paper [6] (Kimura) as 
follows:  

‖𝝎𝝎 × 𝑷𝑷1‖2 + ‖𝝎𝝎 × 𝑷𝑷2‖2 (6)  

= (‖𝒆𝒆𝟑𝟑 × 𝑷𝑷1‖2 + ‖𝒆𝒆𝟑𝟑 × 𝑷𝑷2‖2)𝜔𝜔𝑧𝑧2 
       + 2(〈�́�𝝎 × 𝑷𝑷1,𝒆𝒆𝟑𝟑 × 𝑷𝑷1〉 + 〈�́�𝝎 ×

𝑷𝑷2, 𝒆𝒆𝟑𝟑 × 𝑷𝑷2〉)𝜔𝜔𝑧𝑧 

+ ‖�́�𝝎 × 𝑷𝑷1‖2 + ‖�́�𝝎 × 𝑷𝑷2‖2 



  
 

235 

where 

𝑷𝑷𝒊𝒊 = 𝑟𝑟�cos𝜃𝜃𝑖𝑖,1 cos𝜃𝜃𝑖𝑖,2 , sin𝜃𝜃𝑖𝑖,1 cos 𝜃𝜃𝑖𝑖,2 , sin𝜃𝜃𝑖𝑖,2�
𝑇𝑇 (7)  

𝒆𝒆𝟑𝟑 = [0, 0, 1]𝑇𝑇, �́�𝝎 = �𝜔𝜔𝑥𝑥 ,𝜔𝜔𝑦𝑦 , 0�𝑇𝑇 (8)  

𝜔𝜔𝑧𝑧 = ‖𝑉𝑉‖
𝑟𝑟

tan𝜌𝜌  (9)  

Using  𝑷𝑷𝑖𝑖 = �𝑃𝑃𝑖𝑖,𝑥𝑥 ,𝑃𝑃𝑖𝑖,𝑦𝑦 ,𝑃𝑃𝑖𝑖,𝑧𝑧  �𝑇𝑇 ,  𝒆𝒆𝟑𝟑 × 𝑷𝑷𝑖𝑖 and �́�𝝎 × 𝑷𝑷𝑖𝑖  are 
represented as follow. 
𝒆𝒆𝟑𝟑 × 𝑷𝑷𝑖𝑖 = �−𝑃𝑃𝑖𝑖,𝑦𝑦 ,𝑃𝑃𝑖𝑖,𝑥𝑥 ,0  �𝑇𝑇 (10)  

 �́�𝝎 × 𝑷𝑷𝑖𝑖 = �𝜔𝜔𝑥𝑥  ,𝜔𝜔𝑦𝑦 ,0  �𝑇𝑇 × �𝑃𝑃𝑖𝑖,𝑥𝑥 ,𝑃𝑃𝑖𝑖,𝑥𝑥 ,𝑃𝑃𝑖𝑖,𝑥𝑥  �
𝑇𝑇
 (11)  

 = �𝜔𝜔𝑦𝑦𝑃𝑃𝑖𝑖,𝑧𝑧 ,−𝜔𝜔𝑥𝑥𝑃𝑃𝑖𝑖,𝑧𝑧 ,𝜔𝜔𝑥𝑥𝑃𝑃𝑖𝑖,𝑦𝑦 − 𝜔𝜔𝑦𝑦𝑃𝑃𝑖𝑖,𝑥𝑥  �𝑇𝑇 

Using Eq. (10), ‖𝒆𝒆𝟑𝟑 × 𝑷𝑷𝑖𝑖‖2 is calculated in teams of 
𝑷𝑷𝑖𝑖 = �𝑃𝑃𝑖𝑖,𝑥𝑥  ,𝑃𝑃𝑖𝑖,𝑦𝑦 ,𝑃𝑃𝑖𝑖,𝑧𝑧  �𝑇𝑇. 

‖𝒆𝒆𝟑𝟑 × 𝑷𝑷𝑖𝑖‖2 = 𝑃𝑃𝑖𝑖,𝑥𝑥2 + 𝑃𝑃𝑖𝑖,𝑦𝑦2  (12)  

‖𝒆𝒆𝟑𝟑 × 𝑷𝑷1‖2 + ‖𝒆𝒆𝟑𝟑 × 𝑷𝑷2‖2 (13)  

          = 𝑃𝑃1,𝑥𝑥
2 + 𝑃𝑃1,𝑦𝑦

2 + 𝑃𝑃2,𝑥𝑥
2 + 𝑃𝑃2,𝑦𝑦

2 = 2𝑟𝑟2 − 𝑃𝑃1,𝑧𝑧
2 − 𝑃𝑃2,𝑧𝑧

2  
Using Eq. (10) and Eq. (11), 

 〈�́�𝝎 × 𝑷𝑷𝑖𝑖 , 𝒆𝒆𝟑𝟑 × 𝑷𝑷𝑖𝑖〉 (14)  

 = −𝑃𝑃𝑖𝑖,𝑦𝑦𝑃𝑃𝑖𝑖,𝑧𝑧 𝜔𝜔𝑦𝑦 − 𝑃𝑃𝑖𝑖 ,𝑥𝑥𝑃𝑃𝑖𝑖,𝑧𝑧 𝜔𝜔𝑥𝑥 

 = −
‖𝑉𝑉‖
𝑟𝑟

(𝑃𝑃𝑖𝑖,𝑦𝑦𝑃𝑃𝑖𝑖,𝑧𝑧  cos𝜑𝜑 − 𝑃𝑃𝑖𝑖 ,𝑥𝑥𝑃𝑃𝑖𝑖,𝑧𝑧 sin𝜑𝜑) 

〈�́�𝝎 × 𝑷𝑷1, 𝒆𝒆𝟑𝟑 × 𝑷𝑷1〉 + 〈�́�𝝎 × 𝑷𝑷2, 𝒆𝒆𝟑𝟑 × 𝑷𝑷2〉 (15)  

 = −
‖𝑉𝑉‖
𝑟𝑟

{�𝑃𝑃1,𝑥𝑥𝑃𝑃1,𝑧𝑧 + 𝑃𝑃2,𝑥𝑥𝑃𝑃2,𝑧𝑧� sin𝜑𝜑 

                                          +(𝑃𝑃1,𝑦𝑦𝑃𝑃1,𝑧𝑧 + 𝑃𝑃2,𝑦𝑦𝑃𝑃2,𝑧𝑧) cos𝜑𝜑} 

Using Eq. (11), 

‖�́�𝝎 × 𝑷𝑷𝑖𝑖‖2 = �𝜔𝜔𝑥𝑥2 + 𝜔𝜔𝑦𝑦2�𝑃𝑃𝑖𝑖 ,𝑧𝑧2  + (𝜔𝜔𝑥𝑥𝑃𝑃𝑖𝑖,𝑦𝑦 − 𝜔𝜔𝑦𝑦𝑃𝑃𝑖𝑖,𝑥𝑥)2 

= (𝜔𝜔𝑥𝑥2 + 𝜔𝜔𝑦𝑦2)𝑃𝑃𝑖𝑖,𝑧𝑧2 + 𝑃𝑃𝑖𝑖,𝑦𝑦2 𝜔𝜔𝑥𝑥2+𝑃𝑃𝑖𝑖,𝑥𝑥2 𝜔𝜔𝑦𝑦2 −2𝑃𝑃𝑖𝑖,𝑥𝑥𝑃𝑃𝑖𝑖,𝑦𝑦 𝜔𝜔𝑥𝑥𝜔𝜔𝑦𝑦 

     =  
‖𝑉𝑉‖2

𝑟𝑟2
(𝑃𝑃𝑖𝑖,𝑥𝑥

2 + 𝑃𝑃𝑖𝑖,𝑥𝑥
2 sin2 𝜑𝜑 +𝑃𝑃𝑖𝑖 ,𝑥𝑥2 cos2 𝜑𝜑 

  +2𝑃𝑃𝑖𝑖,𝑥𝑥 𝑃𝑃𝑖𝑖,𝑦𝑦sin𝜑𝜑 cos𝜑𝜑) (16)  

‖�́�𝝎 × 𝑷𝑷1‖2 + ‖�́�𝝎 × 𝑷𝑷2‖2 = ‖𝑉𝑉‖
2

𝑟𝑟2
 {𝑃𝑃1,𝑧𝑧

2 + 𝑃𝑃2,𝑧𝑧
2  

             +(𝑃𝑃1,𝑦𝑦
2 + 𝑃𝑃2,𝑦𝑦

2 ) sin2 𝜑𝜑+(𝑃𝑃1,𝑥𝑥
2 + 𝑃𝑃2,𝑥𝑥

2 ) cos2 𝜑𝜑 

   +2(𝑃𝑃1,𝑥𝑥 𝑃𝑃1,𝑦𝑦 + 𝑃𝑃2,𝑥𝑥𝑃𝑃2,𝑦𝑦)sin𝜑𝜑 cos𝜑𝜑} (17)  

Thus. By substituting Eq. (13), Eq. (15) and Eq. (17) for 

Eq. (6), 𝐸𝐸𝑀𝑀  can be represented in  teams of  𝑃𝑃𝑖𝑖,𝑥𝑥 , 

𝑃𝑃𝑖𝑖,𝑦𝑦 ,𝑃𝑃𝑖𝑖,𝑧𝑧. 
Here, quoting Eq. (5) and Eq. (6) in [6] (Kimura), 

we have 

tan 𝜌𝜌 =
(𝑷𝑷𝟏𝟏 × 𝑷𝑷𝟐𝟐)𝑥𝑥sin𝜑𝜑 − (𝑷𝑷𝟏𝟏 × 𝑷𝑷𝟐𝟐)𝑦𝑦 cos𝜑𝜑

(𝑷𝑷𝟏𝟏 × 𝑷𝑷𝟐𝟐)𝑧𝑧
 (18)  

=
�𝑃𝑃1,𝑦𝑦𝑃𝑃2,𝑧𝑧 − 𝑃𝑃2,𝑦𝑦𝑃𝑃1,𝑧𝑧� sin𝜑𝜑 − �𝑃𝑃1,𝑧𝑧𝑃𝑃2,𝑥𝑥 − 𝑃𝑃1,𝑥𝑥𝑃𝑃2,𝑧𝑧� cos𝜑𝜑

𝑃𝑃1,𝑥𝑥𝑃𝑃2,𝑦𝑦 − 𝑃𝑃1,𝑦𝑦𝑃𝑃2,𝑥𝑥
 

1
2𝜋𝜋

� sin2 𝜑𝜑 𝑑𝑑𝜑𝜑
2𝜋𝜋

0
= � cos2 𝜑𝜑 𝑑𝑑𝜑𝜑

2𝜋𝜋

0
=

1
2

 
(19)  

1
2𝜋𝜋

� sin𝜑𝜑 cos𝜑𝜑 𝑑𝑑𝜑𝜑
2𝜋𝜋

0
= 0 

Using Eq. (18) and Eq. (19) , 

� tan2 𝜌𝜌 𝑑𝑑𝜑𝜑
2𝜋𝜋

0
 (20)  

        =
((𝑷𝑷𝟏𝟏 × 𝑷𝑷𝟐𝟐)𝑥𝑥)2 + ((𝑷𝑷𝟏𝟏 × 𝑷𝑷𝟐𝟐)𝑦𝑦)2

((𝑷𝑷𝟏𝟏 × 𝑷𝑷𝟐𝟐)𝑧𝑧)2
𝜋𝜋 

=
(𝑃𝑃1,𝑦𝑦𝑃𝑃2,𝑧𝑧 − 𝑃𝑃2,𝑦𝑦𝑃𝑃1,𝑧𝑧)2 + (𝑃𝑃1,𝑧𝑧𝑃𝑃2,𝑥𝑥 − 𝑃𝑃1,𝑥𝑥𝑃𝑃2,𝑧𝑧)

(𝑃𝑃1,𝑥𝑥𝑃𝑃2,𝑦𝑦 − 𝑃𝑃1,𝑦𝑦𝑃𝑃2,𝑥𝑥)2
 

Using Eq. (15) and Eq. (18), 

� (〈�́�𝝎 × 𝑷𝑷1, 𝒆𝒆𝟑𝟑 × 𝑷𝑷1〉
2𝜋𝜋

0
+ 〈�́�𝝎 × 𝑷𝑷2, 𝒆𝒆𝟑𝟑 × 𝑷𝑷2〉)𝜔𝜔𝑧𝑧𝑑𝑑𝜑𝜑 

(21)  

= 𝜋𝜋 ‖𝑉𝑉‖2

𝑟𝑟2
1

𝑃𝑃1,𝑥𝑥𝑃𝑃2,𝑦𝑦−𝑃𝑃1,𝑦𝑦𝑃𝑃2,𝑥𝑥
{  

  (𝑃𝑃1,𝑥𝑥𝑃𝑃1,𝑧𝑧 + 𝑃𝑃2,𝑥𝑥𝑃𝑃2,𝑧𝑧)( 𝑃𝑃1,𝑦𝑦𝑃𝑃2,𝑧𝑧 − 𝑃𝑃2,𝑦𝑦𝑃𝑃1,𝑧𝑧) + 

          (𝑃𝑃1,𝑦𝑦𝑃𝑃1,𝑧𝑧 + 𝑃𝑃2,𝑦𝑦𝑃𝑃2,𝑧𝑧)(𝑃𝑃1,𝑧𝑧𝑃𝑃2,𝑥𝑥 − 𝑃𝑃1,𝑥𝑥𝑃𝑃2,𝑧𝑧)} 

Using Eq. (17), 

� ‖�́�𝝎 × 𝑷𝑷1‖2  +  ‖�́�𝝎 × 𝑷𝑷2‖2 𝑑𝑑𝜑𝜑
2𝜋𝜋

0
 (22)  

     = 𝜋𝜋 ‖𝑉𝑉‖2

𝑟𝑟2
(2𝑃𝑃1,𝑧𝑧

2 + 2𝑃𝑃2,𝑧𝑧
2 + 𝑃𝑃1,𝑥𝑥

2 +𝑃𝑃1,𝑦𝑦
2 + 𝑃𝑃2,𝑥𝑥

2 +𝑃𝑃2,𝑦𝑦
2 ) 

     = 𝜋𝜋 ‖𝑉𝑉‖2

𝑟𝑟2
(2𝑟𝑟2 + 𝑃𝑃1,𝑧𝑧

2 + 𝑃𝑃2,𝑧𝑧
2 ) 

Integral by 𝜑𝜑(0° ≤ 𝜑𝜑 ≤ 360°) is represented as follow.  
By substituting Eq. (13), Eq. (20), Eq. (21), and Eq. (22) 
into Eq. (4), 𝐸𝐸𝑀𝑀 can be represented as 
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4𝑟𝑟2

𝑀𝑀‖𝑉𝑉‖2 𝐸𝐸𝑀𝑀 =
2𝑟𝑟2 − 𝑃𝑃1,𝑧𝑧

2 − 𝑃𝑃2,𝑧𝑧
2

�𝑃𝑃1,𝑥𝑥𝑃𝑃2,𝑦𝑦 − 𝑃𝑃1,𝑦𝑦𝑃𝑃2,𝑥𝑥�
2 {�𝑃𝑃1,𝑦𝑦𝑃𝑃2,𝑧𝑧 − 𝑃𝑃2,𝑦𝑦𝑃𝑃1,𝑧𝑧�

2
 

+�𝑃𝑃1,𝑧𝑧𝑃𝑃2,𝑥𝑥 − 𝑃𝑃1,𝑥𝑥𝑃𝑃2,𝑧𝑧�
2} +

2
𝑃𝑃1,𝑥𝑥𝑃𝑃2,𝑦𝑦 − 𝑃𝑃1,𝑦𝑦𝑃𝑃2,𝑥𝑥

{ 

(𝑃𝑃1,𝑥𝑥𝑃𝑃1,𝑧𝑧 + 𝑃𝑃2,𝑥𝑥𝑃𝑃2,𝑧𝑧)(𝑃𝑃1,𝑦𝑦𝑃𝑃2,𝑧𝑧 − 𝑃𝑃2,𝑦𝑦𝑃𝑃1,𝑧𝑧) + (𝑃𝑃1,𝑦𝑦𝑃𝑃1,𝑧𝑧 + 

𝑃𝑃2,𝑦𝑦𝑃𝑃2,𝑧𝑧)(𝑃𝑃1,𝑧𝑧𝑃𝑃2,𝑥𝑥 − 𝑃𝑃1,𝑥𝑥𝑃𝑃2,𝑧𝑧)} + 2𝑟𝑟2 + 𝑃𝑃1,𝑧𝑧
2 +𝑃𝑃2,𝑧𝑧

2  (23)  

By theoretical calculation, we get the following 
properties. 
 
[Property 1]: Optimality of the evaluated value 
If �𝜃𝜃1,2,𝜃𝜃2,2� = (0, 0) (𝑷𝑷1  and 𝑷𝑷2  are on the equator), 
𝐸𝐸𝑀𝑀  takes the minimal value 𝑀𝑀‖𝑉𝑉‖2/2  (see 
Appendix(A)). 
 
(ii) Case of symmetry roller arrangement 
Especially, in case of symmetry arrangement (𝑃𝑃1,𝑥𝑥 =
−𝑃𝑃2,𝑥𝑥,𝑃𝑃1,𝑦𝑦 = 𝑃𝑃2,𝑦𝑦,𝑃𝑃1,𝑧𝑧 = 𝑃𝑃2,𝑧𝑧 ), using (𝜃𝜃1,𝜃𝜃2) =
(𝜃𝜃1,1,𝜃𝜃1,2). Eq. (23) is represented as follow.  

𝐸𝐸𝑀𝑀(𝜃𝜃1,𝜃𝜃2) =
𝑀𝑀‖𝑉𝑉‖2

4𝑟𝑟2 {2𝑟𝑟2 − 2𝑃𝑃1,𝑧𝑧
2 +  

2𝑃𝑃1,𝑧𝑧
2 (𝑟𝑟2 − 𝑃𝑃1,𝑧𝑧

2 )
𝑃𝑃1,𝑦𝑦
2 } 

               =  
𝑀𝑀‖𝑉𝑉‖2

2
(1 − cos2 𝜃𝜃1 cos2 𝜃𝜃2)

sin2 𝜃𝜃1
 (24)  

(0° < 𝜃𝜃1 < 90°, 0° ≤ 𝜃𝜃2 < 90°) 
By theoretical calculation, we prove the 
following fact. 
 
[Property 2]:Monotonicity of the evaluation function 
(i) When 𝜃𝜃1 increases, 𝐸𝐸𝑀𝑀(𝜃𝜃1,𝜃𝜃2) also 
decrease. 
(ii) When 𝜃𝜃2 increases, 𝐸𝐸𝑀𝑀(𝜃𝜃1,𝜃𝜃2) also 
increase. 
 (See Appendix(B)). 
 
3. simulation of Evaluation value on sphere 
   This Chapter presents the simulation results 𝐸𝐸𝑀𝑀  (Eq. 
(24)), with 0° < 𝜃𝜃1 <  90°, 0° ≤ 𝜃𝜃2 <  90°, ‖𝑽𝑽‖ = 1 
[m/s], 𝑀𝑀 = 2. 
  Figure 3 shows the contact points on the upper 
hemisphere. Table 1 shows the distribution of 𝐸𝐸𝑀𝑀(𝜃𝜃1,𝜃𝜃2) 
at the contact points on the upper hemisphere in steps of 
𝜃𝜃1 (0° < 𝜃𝜃1 < 90°) and 𝜃𝜃2 (0° ≤ 𝜃𝜃2 < 90°). 

As shown in Table 1, the value increases from the 
lower left of the table to the right and upward 
correspondingly (see [Property 2]. 𝐸𝐸𝑀𝑀(𝜃𝜃1,𝜃𝜃2) diverges 
infinitely as it approaches (𝜃𝜃1,𝜃𝜃2) = (90°, 0°) . In 
particular, when 𝜃𝜃2 = 0 , 𝐸𝐸𝑀𝑀(𝜃𝜃1,𝜃𝜃2)  is constant 
regardless of the contact position. 

 As shown in [1] and [2], when two constraint 
rollers are placed on the equator, the evaluation value 
is constant  regardless of the angle of the two position 
vectors (see [Property 1]). 

   

Figure 3  The distribution of contact points on the upper 
hemisphere. (a) Isometric view. (b) Right overhead view. 

 
Table 1  The distribution of energy function 𝐸𝐸𝑀𝑀(𝜃𝜃1,𝜃𝜃2) in  

                 the upper hemisphere 
 
80° 32.19 29.40 25.12 19.87 14.29 9.04 4.76 1.97 
70° 8.32 7.67 6.66 5.43 4.12 2.89 1.88 1.23 
60° 3.91 3.65 3.25 2.76 2.24 1.75 1.35 1.09 
50° 2.38 2.25 2.07 1.83 1.59 1.36 1.17 1.04 
40° 1.68 1.62 1.53 1.41 1.29 1.18 1.08 1.02 
30° 1.32 1.29 1.25 1.20 1.14 1.08 1.04 1.01 
20° 1.13 1.12 1.10 1.08 1.05 1.03 1.02 1.00 
10° 1.03 1.03 1.02 1.02 1.01 1.01 1.00 1.00 
0° 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
𝜃𝜃2,𝜃𝜃1 10° 20° 30° 40° 50° 60° 70° 80° 

 
In the ball holding mechanism (evaluation of the 
placement of the world team) [5], the roller arrangement 
is on the upper hemisphere for ball transportation, but it 
is less-energy efficient than on the equator. Since the ball 
is not fixed by a pole caster, it is required to be placed on 
the upper hemisphere. 
 
4. Conclusion 

In this research, we defined an evaluation function 
as mean of roller’s kinetic energy with respect to 
sphere direction angle and derived the exact formula. 
Furthermore, theoretically, we proved that points on 
equator are minimal. 
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  Future issues include consideration of motion related to 
variable mechanisms with offset. 
 
Appendix 
(A) Proof of [Property 1] 
We replace as follow in Eq. (23). 

𝑃𝑃1,𝑥𝑥 = 𝑝𝑝,  𝑃𝑃1,𝑦𝑦 = 𝑞𝑞,  𝑃𝑃1,𝑧𝑧 = 𝑥𝑥 

𝑃𝑃2,𝑥𝑥 = 𝛼𝛼,  𝑃𝑃2,𝑦𝑦 = 𝛽𝛽, 𝑃𝑃2,𝑧𝑧 = 𝑥𝑥 

𝐸𝐸� =
4𝑟𝑟2

𝑀𝑀‖𝑉𝑉‖2
𝐸𝐸𝑀𝑀 

(A,1) 

 

𝐸𝐸� =
2𝑟𝑟2 − 𝑥𝑥2 − 𝑥𝑥2

(𝑝𝑝𝛽𝛽 − 𝑞𝑞𝛼𝛼)2 {(𝑞𝑞𝑥𝑥 − 𝛽𝛽𝑥𝑥)2 + (𝛼𝛼𝑥𝑥 − 𝑝𝑝𝑥𝑥)2} 

+
2

𝑝𝑝𝛽𝛽 − 𝑞𝑞𝛼𝛼
{ 

(𝑝𝑝𝑥𝑥 + 𝛼𝛼𝑥𝑥)(𝑞𝑞𝑥𝑥 − 𝛽𝛽𝑥𝑥) + (𝑞𝑞𝑥𝑥 + 𝛽𝛽𝑥𝑥) (𝛼𝛼𝑥𝑥 − 𝑝𝑝𝑥𝑥)} 

+2𝑟𝑟2 + 𝑥𝑥2 + 𝑥𝑥2 (A,2) 

Where 

𝑝𝑝2 + 𝑞𝑞2 + 𝑥𝑥2 = 𝑟𝑟2,   𝛼𝛼2 + 𝛽𝛽2 + 𝑥𝑥2 = 𝑟𝑟2 (A,3) 

Furthermore. 

𝐸𝐸𝑀𝑀 = 𝑃𝑃𝑋𝑋2 + 2𝑄𝑄𝑋𝑋 + 𝑅𝑅 (A,4) 

Where 
𝑋𝑋 = 1/(𝑝𝑝𝛽𝛽 − 𝑞𝑞𝛼𝛼),  (𝑝𝑝𝛽𝛽 − 𝑞𝑞𝛼𝛼 ≠ 0) (A,5) 

𝑃𝑃 = (2𝑟𝑟2 − 𝑥𝑥2 − 𝑥𝑥2){(𝑞𝑞𝑥𝑥 − 𝛽𝛽𝑥𝑥)2 + (𝛼𝛼𝑥𝑥 − 𝑝𝑝𝑥𝑥)2} 

 (A,6) 

𝑄𝑄 = (𝑝𝑝𝑥𝑥 + 𝛼𝛼𝑥𝑥)(𝑞𝑞𝑥𝑥 − 𝛽𝛽𝑥𝑥) + (𝑞𝑞𝑥𝑥 + 𝛽𝛽𝑥𝑥)(𝛼𝛼𝑥𝑥 − 𝑝𝑝𝑥𝑥) 

 (A,7) 

𝑅𝑅 = 2𝑟𝑟2 + 𝑥𝑥2 + 𝑥𝑥2 (A,8) 

 From 2𝑟𝑟2 − 𝑥𝑥2 − 𝑥𝑥2 > 0 ⇒ 𝑃𝑃 ≥ 0, we consider case 
of  𝑃𝑃 > 0  and 𝑃𝑃 = 0. 
 
(i)  Case of 𝑃𝑃 > 0 
From completing the square of Eq. (A,4),  
𝐸𝐸� = 𝑃𝑃𝑋𝑋2 + 2𝑄𝑄𝑋𝑋 + 𝑅𝑅  

    = 𝑃𝑃(𝑋𝑋 +
𝑄𝑄
𝑃𝑃

)2 + 𝑅𝑅 −
𝑄𝑄2

𝑃𝑃
 (A,9) 

𝐸𝐸� takes minimal value  

𝑅𝑅 −
𝑄𝑄2

𝑃𝑃
= 2𝑟𝑟2 + 𝑥𝑥2 + 𝑥𝑥2 (A,10) 

    −
{(𝑝𝑝𝑥𝑥 + 𝛼𝛼𝑥𝑥)(𝑞𝑞𝑥𝑥 − 𝛽𝛽𝑥𝑥) + (𝑞𝑞𝑥𝑥 + 𝛽𝛽𝑥𝑥) (𝛼𝛼𝑥𝑥 − 𝑝𝑝𝑥𝑥)}2

(2𝑟𝑟2 − 𝑥𝑥2 − 𝑥𝑥2){(𝑞𝑞𝑥𝑥 − 𝛽𝛽𝑥𝑥)2 + (𝛼𝛼𝑥𝑥 − 𝑝𝑝𝑥𝑥)2}
 

And. Equality condition is 

 𝑃𝑃𝑋𝑋 = −𝑄𝑄    ⟺ (A,11) 

(2𝑟𝑟2 − 𝑥𝑥2 − 𝑥𝑥2){(𝑞𝑞𝑥𝑥 − 𝛽𝛽𝑥𝑥)2 + (𝛼𝛼𝑥𝑥 − 𝑝𝑝𝑥𝑥)2}
𝑝𝑝𝛽𝛽 − 𝑞𝑞𝛼𝛼

 

= −(𝑝𝑝𝑥𝑥 + 𝛼𝛼𝑥𝑥)(𝑞𝑞𝑥𝑥 − 𝛽𝛽𝑥𝑥) − (𝑞𝑞𝑥𝑥 + 𝛽𝛽𝑥𝑥) (𝛼𝛼𝑥𝑥 − 𝑝𝑝𝑥𝑥) 

We make preparations several Lemma for prove 
Optimality. 
[Lemma 1]: 

(𝑟𝑟2𝑥𝑥2 + 𝑟𝑟2𝑥𝑥2 − 2𝑥𝑥2𝑥𝑥2)2 ≥ 4(𝑟𝑟2 − 𝑥𝑥2)(𝑟𝑟2 − 𝑥𝑥2)𝑥𝑥2𝑥𝑥2 

 (A,12) 

[Lemma 2]: 

𝑟𝑟2𝑥𝑥2 + 𝑟𝑟2𝑥𝑥2 − 2𝑥𝑥2𝑥𝑥2 ≥ 2(𝑝𝑝𝛼𝛼 + 𝑞𝑞𝛽𝛽)𝑥𝑥𝑥𝑥 (A,13) 

PROOF: 
Eq.(A,3) is substituted in right side of Eq.(A,12). Thus, 
it is given. 

(𝑟𝑟2𝑥𝑥2 + 𝑟𝑟2𝑥𝑥2 − 2𝑥𝑥2𝑥𝑥2)2 ≥ 4(𝑝𝑝2 + 𝑞𝑞2)(𝛼𝛼2 + 𝛽𝛽2)𝑥𝑥2𝑥𝑥2 

 (A,14) 

From 𝑝𝑝𝛽𝛽 − 𝑞𝑞𝛼𝛼 ≠ 0 (𝑝𝑝𝛽𝛽 − 𝑞𝑞𝛼𝛼 = 0 is equality 

condition of Cauchy-Schwarz inequality), 

(𝑝𝑝2 + 𝑞𝑞2)(𝛼𝛼2 +𝛽𝛽2)  > (𝑝𝑝𝛼𝛼+ 𝑞𝑞𝛽𝛽)2 (A,15) 

Using Cauchy-Schwarz inequality and 𝑥𝑥2𝑥𝑥2 ≥ 0, 

4(𝑝𝑝2 + 𝑞𝑞2)(𝛼𝛼2 + 𝛽𝛽2)𝑥𝑥2𝑥𝑥2  ≥ 4(𝑝𝑝𝛼𝛼 + 𝑞𝑞𝛽𝛽)2𝑥𝑥2𝑥𝑥2 

(A,16) 

Using Eq. (A,14) and Eq. (A,16), it is given. 

4(𝑟𝑟2𝑥𝑥2 + 𝑟𝑟2𝑥𝑥2 − 2𝑥𝑥2𝑥𝑥2)2  ≥ 4(𝑝𝑝𝛼𝛼 + 𝑞𝑞𝛽𝛽)2𝑥𝑥2𝑥𝑥2 

(A,17) 

Focus on 𝑟𝑟2𝑥𝑥2 + 𝑟𝑟2𝑥𝑥2 − 2𝑥𝑥2𝑥𝑥2 and AM-GM inequality. 

𝑟𝑟2𝑥𝑥2 + 𝑟𝑟2𝑥𝑥2 − 2𝑥𝑥2𝑥𝑥2 = 𝑟𝑟2(𝑥𝑥2 + 𝑥𝑥2) − 2𝑥𝑥2𝑥𝑥2 

 ≥  𝑟𝑟2 × 2�𝑥𝑥2𝑥𝑥2 − 2𝑥𝑥2𝑥𝑥2 = 2𝑥𝑥𝑥𝑥(𝑟𝑟2 − 𝑥𝑥𝑥𝑥) ≥ 0    
(A,18) 

From |𝑝𝑝𝛼𝛼 + 𝑞𝑞𝛽𝛽| ≥ 0, |𝑝𝑝𝛼𝛼 + 𝑞𝑞𝛽𝛽| ≥ 𝑝𝑝𝛼𝛼 + 𝑞𝑞𝛽𝛽, 

𝑟𝑟2𝑥𝑥2 + 𝑟𝑟2𝑥𝑥2 − 2𝑥𝑥2𝑥𝑥2 ≥ 2|𝑝𝑝𝛼𝛼+ 𝑞𝑞𝛽𝛽|𝑥𝑥𝑥𝑥 
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                              ≥ 2(𝑝𝑝𝛼𝛼 + 𝑞𝑞𝛽𝛽)𝑥𝑥𝑥𝑥               (A,19) 

Equality conditions are  𝑥𝑥 = 𝑥𝑥 , 𝑥𝑥2𝑥𝑥2 = 0 and 
 { = 0 or 𝑝𝑝𝛼𝛼 + 𝑞𝑞𝛽𝛽 ≥ 0 }. 
Thus. 𝑥𝑥 = 𝑥𝑥 = 0. [END] 

[Lemma 3]: 

(𝑥𝑥2 + 𝑥𝑥2)(2𝑟𝑟2 − 𝑥𝑥2 − 𝑥𝑥2) 

                           ≥  (𝑝𝑝𝑥𝑥 + 𝛼𝛼𝑥𝑥)2 + (𝑞𝑞𝑥𝑥 + 𝛽𝛽𝑥𝑥)2   (A,20) 

PROOF: 
Using Eq. (A,3) and [Lemma 2], 

(𝑥𝑥2 + 𝑥𝑥2)(2𝑟𝑟2 − 𝑥𝑥2 − 𝑥𝑥2) − (𝑝𝑝𝑥𝑥 + 𝛼𝛼𝑥𝑥)2 

−(𝑞𝑞𝑥𝑥 + 𝛽𝛽𝑥𝑥)2  =   2𝑟𝑟2(𝑥𝑥2 + 𝑥𝑥2) − (𝑥𝑥2 + 𝑥𝑥2)𝟐𝟐 

−(𝑝𝑝2 + 𝑞𝑞2)𝑥𝑥2 − (𝛼𝛼2 + 𝛽𝛽2)𝑥𝑥2 − 2(𝑝𝑝𝛼𝛼 + 𝑞𝑞𝛽𝛽)𝑥𝑥𝑥𝑥     

= 𝑟𝑟2𝑥𝑥2 + 𝑟𝑟2𝑥𝑥2 − 2𝑥𝑥2𝑥𝑥2 − 2(𝑝𝑝𝛼𝛼 + 𝑞𝑞𝛽𝛽)𝑥𝑥𝑥𝑥 ≥ 0 
(A,21) 

Equality conditions are 𝑥𝑥 = 𝑥𝑥 = 0. [END] 
 
Using [Lemma 3] , Cauchy-Schwarz inequality and 

𝑃𝑃 > 0, 

(𝑥𝑥2 + 𝑥𝑥2)(2𝑟𝑟2 − 𝑥𝑥2 − 𝑥𝑥2){(𝑞𝑞𝑥𝑥 − 𝛽𝛽𝑥𝑥)2 + (𝛼𝛼𝑥𝑥 − 𝑝𝑝𝑥𝑥)2} 

≥  {(𝑝𝑝𝑥𝑥 + 𝛼𝛼𝑥𝑥)2 + (𝑞𝑞𝑥𝑥 + 𝛽𝛽𝑥𝑥)2}{(𝑞𝑞𝑥𝑥 − 𝛽𝛽𝑥𝑥)2 + (𝛼𝛼𝑥𝑥 − 𝑝𝑝𝑥𝑥)2} 

≥ {(𝑝𝑝𝑥𝑥 + 𝛼𝛼𝑥𝑥)(𝑞𝑞𝑥𝑥 − 𝛽𝛽𝑥𝑥) + (𝑞𝑞𝑥𝑥 + 𝛽𝛽𝑥𝑥) (𝛼𝛼𝑥𝑥 − 𝑝𝑝𝑥𝑥)}2 

⟺    𝑥𝑥2 + 𝑥𝑥2 ≥ 

{(𝑝𝑝𝑥𝑥 + 𝛼𝛼𝑥𝑥)(𝑞𝑞𝑥𝑥 − 𝛽𝛽𝑥𝑥) + (𝑞𝑞𝑥𝑥 + 𝛽𝛽𝑥𝑥) (𝛼𝛼𝑥𝑥 − 𝑝𝑝𝑥𝑥)}2

(2𝑟𝑟2 − 𝑥𝑥2 − 𝑥𝑥2){(𝑞𝑞𝑥𝑥 − 𝛽𝛽𝑥𝑥)2 + (𝛼𝛼𝑥𝑥 − 𝑝𝑝𝑥𝑥)2}
 

(A,22) 

From Eq. (A,10) and Eq. (A,22), 

𝐸𝐸� ≥ 𝑅𝑅 −
𝑄𝑄2

𝑃𝑃
= 2𝑟𝑟2 + 𝑥𝑥2 + 𝑥𝑥2 (A,23) 

−
{(𝑝𝑝𝑥𝑥 + 𝛼𝛼𝑥𝑥)(𝑞𝑞𝑥𝑥 − 𝛽𝛽𝑥𝑥) + (𝑞𝑞𝑥𝑥 + 𝛽𝛽𝑥𝑥) (𝛼𝛼𝑥𝑥 − 𝑝𝑝𝑥𝑥)}2

(2𝑟𝑟2 − 𝑥𝑥2 − 𝑥𝑥2){(𝑞𝑞𝑥𝑥 − 𝛽𝛽𝑥𝑥)2 + (𝛼𝛼𝑥𝑥 − 𝑝𝑝𝑥𝑥)2}
 

≥ 2𝑟𝑟2   

And. equality condition is  Eq. (A,11) , 𝑥𝑥 = 𝑥𝑥 = 0 and 
(𝑝𝑝𝑥𝑥 + 𝛼𝛼𝑥𝑥)(𝛼𝛼𝑥𝑥 − 𝑝𝑝𝑥𝑥) − (𝑞𝑞𝑥𝑥 + 𝛽𝛽𝑥𝑥)(𝑞𝑞𝑥𝑥 − 𝛽𝛽𝑥𝑥) = 0. 
Thus. Minimal value is 𝑀𝑀‖𝑉𝑉‖2/2  when 𝑥𝑥 = 𝑥𝑥 = 0 
(The contact points are on the equator). 
[END] 

(ii) Case of 𝑃𝑃 = 0 
 

From Eq. (A,6) and 2𝑟𝑟2 − 𝑥𝑥2 − 𝑥𝑥2 > 0, 

𝑞𝑞𝑥𝑥 − 𝛽𝛽𝑥𝑥 = 𝛼𝛼𝑥𝑥 − 𝑝𝑝𝑥𝑥 = 0 (A,24) 

From Eq. (A,6) and Eq. (A,24), 
𝑄𝑄 = 0 (A,25) 

Thus 

𝐸𝐸� = 𝑃𝑃𝑋𝑋2 − 2𝑄𝑄𝑋𝑋 + 𝑅𝑅 (A,26) 

    = 𝑅𝑅 = 2𝑟𝑟2 + 𝑥𝑥2 + 𝑥𝑥2 ≥ 2𝑟𝑟2 
Equality condition is 𝑥𝑥 = 𝑥𝑥 = 0. 
From (i) and (ii), It is proved completely. 
 
(B) Proof of [Property 2] 
We put  𝑋𝑋 = sin2 𝜃𝜃1 and 𝑌𝑌 = sin2 𝜃𝜃2 in Eq. (23). 
𝐸𝐸𝑀𝑀(𝜃𝜃1, 𝜃𝜃2)

=
𝑀𝑀‖𝑉𝑉‖2

2

1 − (1 − 𝑋𝑋)(1 − 𝑌𝑌)
𝑋𝑋

 
(A,27) 

                 =
𝑀𝑀‖𝑉𝑉‖2

2

𝑋𝑋 + 𝑌𝑌 − 𝑋𝑋𝑌𝑌

𝑋𝑋

=
𝑀𝑀‖𝑉𝑉‖2

2
�1 + (

1

𝑋𝑋
− 1)𝑌𝑌� 

From 0 < 1
𝑋𝑋
− 1, 𝐸𝐸𝑀𝑀(𝜃𝜃1,𝜃𝜃2) is an decreasing function 

with respect to 𝜃𝜃1 . and 𝐸𝐸𝑀𝑀(𝜃𝜃1,𝜃𝜃2) is an increasing 
function with respect to 𝜃𝜃2. 
 
References 
[1] M.Wada, K.Kato, "Kinematic modeling and simulation 

of active-caster robotic drive with a ball transmission 
(ACROBAT-S)". 2016 IEEE/RSJ International 
Conference on Intelligent Robots and Systems. Daejeon, 
2016-12-9/25, IEEE Robotics and Automation Society,  

[2] S. Ishida, H. Miyamoto, “Holonomic 
Omnidirectional Vehicle with Ball Wheel Drive 
Mechanism, 2012 The Japan Society of Mechanical 
Engineers.Vol.78,No.790, pp.2162-2170, 2012. 

[3] K. Kimura, S. Chikushi, et al, Motion Analysis of a 
Sphere Driven by Rollers, Journal of the Robotics 
Society of Japan. Vol.38, No.5, pp.485-495, 2020. 

[4] K. Kimura, K. Ishii, Y. Takemura, M. Yamamoto, 
Mathematical Modeling and motion analysis of the wheel 
based ball retaining mechanism, SCIS & ISIS, pp.4106-
4111, 2016. 

[5] K. Kimura, S. Chikushi, K. Ishii, Evaluation of the Roller 
Arrangements for the Ball-Dribbling Mechanisms 
adopted by RoboCup Teams, Journal of Robotics, 
Nrtworking and Artificial Life, Vol.6, issue 3, pp. 183- 
190, 2019. 

[6] K. Kimura, K. Ishii, The Spherical Robot Transfer 
Problem With Minimal Total Kinetic Energy, The 2021 

https://ieeexplore.ieee.org/abstract/document/7759656
https://ieeexplore.ieee.org/abstract/document/7759656
https://ieeexplore.ieee.org/abstract/document/7759656
https://ieeexplore.ieee.org/abstract/document/7759656
https://ieeexplore.ieee.org/abstract/document/7759656
https://www.jstage.jst.go.jp/article/kikaic/78/790/78_2162/_pdf
https://www.jstage.jst.go.jp/article/kikaic/78/790/78_2162/_pdf
https://www.jstage.jst.go.jp/article/kikaic/78/790/78_2162/_pdf
https://www.jstage.jst.go.jp/article/kikaic/78/790/78_2162/_pdf
https://www.jstage.jst.go.jp/article/jrsj/38/5/38_38_485/_article/-char/ja/
https://www.jstage.jst.go.jp/article/jrsj/38/5/38_38_485/_article/-char/ja/
https://www.jstage.jst.go.jp/article/jrsj/38/5/38_38_485/_article/-char/ja/
https://ieeexplore.ieee.org/abstract/document/7801702
https://ieeexplore.ieee.org/abstract/document/7801702
https://ieeexplore.ieee.org/abstract/document/7801702
https://ieeexplore.ieee.org/abstract/document/7801702
https://www.atlantis-press.com/journals/jrnal/125928194/view
https://www.atlantis-press.com/journals/jrnal/125928194/view
https://www.atlantis-press.com/journals/jrnal/125928194/view
https://www.atlantis-press.com/journals/jrnal/125928194/view
https://www.atlantis-press.com/journals/jrnal/125928194/view
https://ci.nii.ac.jp/naid/120007017214/
https://ci.nii.ac.jp/naid/120007017214/


  
 

239 

international Conference on Artificial Alife and Robotics 
(ICAROB2021), pp.226-270,2021. 

 
Authors Introduction 

 
Dr. Kenji Kimura 

He is a Lecturer in Department of 
Control Engineering, National 
Institute of Technology, Matsue 
College, where he has been since 
2022. He    received    the    ME 
(mathematics) from Kyushu 
University in 2002 and received his 
Ph.D. degree in engineering from 
Kyushu Institute of in 2020. Then, 

He was mathematical teacher of International   
Baccalaureate Diploma Program (Mathematics) and 
engineering course chief in Fukuoka Daiichi High 
School, His research interests are spherical mobile robot 
kinematics, control for object manipulation. 

  
Mr. Yusuke Abematsu 

He is an Associate professor of 
Mathematics in general education at 
National Institute of Technology, 
Kagoshima College, where he has 
been since April in 2022. He 
received the ME (mathematics) 
from Kyushu University in 2002. He 

worked as a public high school math teacher in 
Kagoshima for 20 years. He is positively working on 
establishing an educational method that connects closely 
mathematics and engineering. 

 
Mr. Hiroyasu Hirai 

He received his B.E., M.E., in 
Computer Science from Nippon 
Bunri University, Japan, in 2013, 
2016, respectively. He is a 3nd year 
student in the doctoral program of 
the Kyushu Institute of Technology. 
He is an engineer of Garuda 

incorporated in 2016. His research interest includes 
autonomous robotics and machine learning (deep 
learning) .  

 

Dr. Kazuo Ishii 
He is a Professor in the Kyushu 
Institute of Technology, where he 
has been since 1996. He received 
his Ph.D. degree in engineering 
from University of Tokyo, Tokyo, 
Japan, in 1996. His research 
interests span both ship marine 
engineering and Intelligent 

Mechanics. He holds five patents derived from his 
research.  

 
 

 

https://ci.nii.ac.jp/naid/120007017214/
https://ci.nii.ac.jp/naid/120007017214/

	1. Introduction
	2.1 Kinetic energy of the roller
	Consider two rollers (right cylinder) with radius 𝑅, mass 𝑀, moment of inertia 𝐼, and roller’s angular velocity ,𝜔-𝑖.
	Because that the sphere and roller engage with each other at ,𝑷-𝑖..

