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ABSTR AC T  
Conventionally, the brain signals were analysed manually by the neuroscientists on how the brain 
signals reacts in proportion with the human body. However, this process is very time consuming 
and unreliable. Therefore, we have proposed a brain signal detection system based on deep 
learning algorithm in response to the output of EEG device on the imagery finger movements. 
These fingers include thumb, index, middle, ring and little of right hand. In this study, 4 
Convolutional Neural Network (CNN) classification models were developed. These 4 CNN 
models are different in terms of the pre-processing requirements and the neural network 
architecture. The best results for offline classification obtained in this project are 69.07% and 
82.83% respectively in terms of average accuracy from 6-class and 2-class tests. Moreover, this 
project has also developed a proof of concept for applying the trained models in online or real-
time classification. 
 
© 2022 The Author. Published by Sugisaka Masanori at ALife Robotics Corporation Ltd 
This is an open access article distributed under the CC BY-NC 4.0 license 
(http://creativecommons.org/licenses/by-nc/4.0/) 

  
1. INTRODUCTION 

Brain-computer Interface (BCI) is a device used to 
detect brain signals [1]. The device enables human brain 
activities to interact with the environment [1]. BCI is 
used widely in medical application, such as stroke 
rehabilitation, controlling smart devices, communication 
device for patients without motor abilities, mental disease 
diagnosis and many more. Generally, there are three 
types of BCI devices: invasive, partially invasive, and 
non-invasive.  

Due to the clinical risks and impracticality of 
invasive and partially invasive BCI, this research will  
 

 
only focus on electroencephalogram (EEG) based non-
invasive BCI device. According to [2], EEG are mostly  
used in other BCI research because of its reliability, ease 
of use and non-invasiveness. EEG functions by detecting 
the brain signals in terms of voltage fluctuations from the 
human scalp through the electrodes. Besides, EEG is high 
in temporal resolution and relatively low in cost. 

In 2018, Samson et al. has developed an EEG-based 
Open BCI device for controlling home appliances for 
impaired individuals [3]. The EEG signals generated by 
eye-blinking movement and concentration levels are 
collected using four electrodes. The frontal and occipital 
lobes, which are located at FP1, FP2, F8, and CP6, are 
used to insert electrodes. The Mu waves created when the 
user blinks his eyes are read by the electrode implanted 
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on the frontal love. The electrode on the occipital lobe 
reads the alpha impulses produced when the user placed 
his teeth against each other at the same moment. These 
signals will be utilised to operate home appliances as a 
command. However, the project is not fully EEG-based 
because it utilizes EMG signals as one of the inputs, 
which is generated by eye-blinking. 

According to [4], there are six classes of brain 
signals: motor imagery (MI), sleep stage scoring, 
emotion recognition, mental workload, seizure detection 
and event-related potential detection. Since that this 
research is about imagery finger detection, therefore, it 
falls under the category of MI. MI refers to the mental’s 
thought on motor movements [5]. This phenomenon can 
be detected by the EEG devices as the brain signals are 
induced in motor cortex during imagination of motor 
movements.  

To classify these signals, deep learning approach are 
often being used. Deep learning is a subset of machine 
learning in which a computer model learns to perform 
certain tasks based on a set of data [6]. The deep learning 
architecture is inspired by the structure of human brain; 
hence, they are often called as artificial neural networks. 
When properly trained, deep learning models can achieve 
high accuracy for tasks like classification, regression, and 
text generation [7]. 

The research done by [8] [9] [10] do not implement 
any feature extraction technique to pre-process the 
training data. The raw EEG signals were used directly as 
the training data for the deep learning algorithm. Due to 
the nature of Convolutional Neural Network (CNN) 
architecture, the learnt parameters in this algorithm form 
layers of filters capable of producing the feature maps 
from the raw EEG signals. Therefore, by stacking more 
convolutional layers, the deep learning algorithm can 
produce higher order of feature maps automatically, 
increasing the classification accuracy. However, the 
increase in number of learnable parameters causes more 
computational power required to execute the algorithm. 

The Common Spatial Pattern (CSP) and Fast Fourier 
Transform Energy Map (FFTEM) algorithms was used 
by [11] for feature computation and feature selection, 
respectively. The CSP algorithm works by applying 
spatial filters to obtain the distinctive features between 
two classes. The FFTEM algorithm then used these 
features to compute the energy maps. These energy maps 
are used as the training data. This method can reduce the 
computational power needed for running the deep 
learning algorithm as lesser neural network layers are 
required. However, some of the features from the signals 
might be discarded when applying the CSP algorithm 
which leads to lower classification accuracy. 

In the papers written by [12] [13], Short Time 
Fourier Transform (STFT) was applied to convert the 
EEG signals into 2D images. The resulting images 

contain 3 information: time, frequency, and intensity. 
This technique can greatly increase the classification 
accuracy of the algorithm since CNN architecture is very 
effective on image recognition. However, performing 
STFT for feature extraction increases the complexity of 
the classification algorithm because higher dimensions of 
data is being used.  

 Sakhavi et al. has extracted characteristics from 
EEG data using the Filter-Bank Common Spatial Pattern 
(FBCSP) approach [14]. The FBCSP algorithm is an 
improved variant of the CSP algorithm. To discover the 
patterns between each EEG channel, spatial filters are 
applied. This technique yields discriminative features 
that can be used to distinguish between two classes. The 
complexity of the classification algorithm can be reduced 
by using FBCSP to pre-process the EEG data, using less 
CPU power. However, when compared to using a deep 
learning approach to create trained filters for feature 
extraction, the FBCSP technique may disregard some 
characteristics in the EEG signals. 

The combinations of artefact removal with bandpass 
filters, CSP feature extraction and random forest (RF) 
classifier to classify the imagery finger movements was 
done by [15]. This research has successfully obtained the 
best accuracy of 54% with 5 classes (thumb, index, 
middle, ring and little) of imagery finger movements. 

The research done by [15] uses the combinations of 
artefact removal with bandpass filters, ERD/ERS feature 
extraction and Support Vector Machine (SVM) classifier. 
This research obtains average accuracy of 62.5% in 
classifying the 2 classes of imagery movements for left 
and right index fingers. 

2. METHODS 

3. Overall system 

 
Fig 1: Block diagram for the system in training the deep 

learning based classification algorithm. 

The system shown in Fig 1 can be separated into 2 
sections: data collection and signal pre-processing as 
well as training and evaluation of the classification 
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algorithm. The former prepares the MI dataset recorded 
from the EEG device. In this stage, artefacts removal, 
feature extraction and data conversion are performed at 
the raw EEG signals. These pre-processed signals are 
being used as the training data for the deep learning 
model. The deep learning model in turn trains the neural 
network to classify the MI tasks based on the pre-
processed training data. The deep learning model’s 
performance will be evaluated in terms of accuracy and 
loss.  

2.1.1 Data Pre-processing Technique 

Summarizing the outcomes obtained from literature 
review, there are 5 feature extraction techniques that can 
be applied in this research as shown in Table 1. 
 

Table 1: Description of pre-processing techniques that 
can be applied in this research. 

Pre-processing 
Technique Description 

No feature 
extraction 

Raw EEG signals are used directly 
as the input to the deep learning 
algorithm. 

EEG channels 
selection 

Only certain EEG channels that 
contains the most MI related 
information are selected as the 
input to the deep learning 
algorithm. 

Short-time 
Fourier 

transform 
(STFT) 

This technique converts the time-
based EEG signals into 2D images 
as the input to the deep learning 
algorithm. 

Common 
spatial pattern 

(CSP) 

CSP algorithm is applied on the 
EEG signals to obtain the 
distinctive features between each 
class. The extracted features are 
used as the input to the deep 
learning algorithm. 

Cropped 
training 

Each MI trials are cropped with a 
sliding window of smaller period. 
This technique increases the 
number of training data and 
improves the performance during 
online classification. 

 
In this research, combinations of each of these data 

pre-processing techniques will be applied. The results 
are compared to obtain the classification algorithm with 
the highest performance. 
 

2.1.2 Deep Learning Architecture 

Summarizing the outcomes obtained from the 
literature review, there are 3 convolutional layer 
architectures that can be applied in this research as shown 
in Table 2.  
 

Table 2: Description of different convolutional layer 
architectures. 

No. Deep Learning Architecture 
1 2 convolutional layers with one-dimensional 

filters. These filters are applied across the time 
and channel axis of EEG data, respectively. 
This architecture allows the filter parameters to 
be learnt separately and produce feature maps 
on the temporal and spatial information from 
the input signals. 

2 2 convolutional layers with two-dimensional 
filters. This architecture is applicable only 
when the EEG signals are converted into 2D 
images via Short Time Fourier Transform 
(STFT). This technique can greatly reduce the 
number of learnable parameters in the deep 
learning algorithm, hence, reducing the 
computational power needed to run the 
algorithm.  

3 The Channel-wise CNN architecture. This 
architecture consists of 2 convolution layers 
both with 1D filters applied across the time 
axis of the EEG signals. Higher order of 
feature maps can be obtained by applying more 
than one filters across the temporal axis of the 
signals. Therefore, this can improve the 
classification accuracy of the trained model. 

 
 

In this research, each of CNN architectures will be 
applied and compared to obtain the technique that can 
yield to the highest performance. 

2.1.3 Preliminary Design for Data Acquisition 

The first step for acquiring the EEG dataset is to 
determine the timings where the subjects perform the 
imagery finger movement tasks. To ensure that the 
timings used are consistent across each subject, videos 
will be used as the guidance for collecting the dataset. To 
achieve this, a timing diagram is developed as the videos 
framework as shown in Fig 2. 
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Fig 2: Timing diagram for data acquisition. 

 
10 samples per class per session will be used in this 

research. The cue time or the period of MI task is 4 
seconds. The time interval between each MI is 3 seconds 
to allow space for the subject in preparing the next MI 
task. A beeping sound will be played 1 second before the 
cue start to notify the subject for the next MI task. 
Therefore, combining the time required for initial 
countdown, 76 seconds are needed to record each MI 
class per subject. 

 

2.1.4 Preliminary Design for Artefact Removal 

Since that battery-based EEG device will be used in 
this research, the use of notch filter (bandstop filter) to 
remove the line noise is not required. This is because the 
battery power supply can provide perfect direct current 
(DC) to the device, hence, the line noise is not present in 
the EEG signals. Besides, 8-30Hz bandpass filter will be 
applied to the EEG signals to remove the noise in the 
signals due to muscle movements. This frequency range 
is chosen as it covers the mu (8-13Hz) and beta (13-
30Hz) frequency bands of brain signals, consisting of the 
most optimal signal-to-noise ratio for MI related 
classification. 

 
 

2.1.5 EEG Dataset Collection 
 

In stage 1, the EEG headset is used to record the brain 
signals of the subjects. There are 6 subjects who 
participated in the EEG data collection for this project. 
Two recording sessions were conducted for each subject, 
with 10 MI trials per class per session. Therefore, there 
will be a total of 20 MI trials for each class per subject. 
The EEG signals are sampled at the rate of 250Hz and 16 
channels. The electrode locations (based on 10-20 EEG 
electrode placement standard) and their respective 
channels were illustrated in Fig 3 and summarized in 
Table 3. 
 

 
Fig 1: Illustration of electrode locations and their 

respective channel. 

 

Table 1: The list of electrode locations and their 
respective channel. 
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Before the recording session, the subjects were 

asked to ensure the cleanliness of their hair and scalp. 
This is to prevent that the EEG signals obtained contains 
noises due to the poor conductivity of the electrodes 
caused by blockage of grease or dirt on the scalp. The 
subjects were briefed about the details and procedures of 
the recording session, while any enquiry from the 
subjects were answered. After that, they were asked to 
fill in a consent form as an agreement to participate in 
this research. 

During the recording session, the subjects were 
asked to sit on a comfortable chair in a quiet room, with 
their right arm resting on a table and palm facing upwards. 
This is to help the subjects on focusing during the 
recording session. Then, the subjects were asked to wear 
the EEG headset. The electrodes were tuned such that 
they were touching the subjects’ scalp. A video was 
played for each class and the subjects were asked to 
perform MI trial according to the instructions given in the 
video as shown in Fig 4. The subjects were requested not 
to do any muscle movements such as blinking when 
performing the MI trials. This is because the muscle 
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movements will decrease the quality of the EEG dataset, 
as it confuses the deep learning algorithm during the 
training session.  

 
 

Fig 4: Image montage of the cues used in the video for 
recording EEG dataset. 

 
After the first recording session was completed, the 

subjects were given 5 minutes of break before continuing 
with the second session. The total duration of recording 
sessions is estimated to be around 15 to 20 minutes per 
subject excluding the time taken for briefing.  

 

2.2 Classification Model Development  

Variable that can be measure are the EEG signals we 
get form the 16 electrodes from the BCI (Brain Computer 
Interface) Headset. The 16 electrodes will give 16 
channels of reading. The signal for each channel is 
sampled at 250Hz. The BCI equipment is shown in Fig 5. 
 

 

  
 
                            

Fig 5: BCI Equipment 
 
 

. 

In this stage, the EEG signals data was pre-processed 
before being used as the training and testing data for the 
CNN classification models. The EEG signals were 
passed through an 8-30Hz bandpass filter to remove the 
artefacts. After artefact removal, the EEG signals are 
trimmed according to the MI task for each class and the 
rest interval. Two recording sessions were conducted for 
each subject, with 10 MI trials per class per session. 
Therefore, there will be a total of 20 MI trials for each 
class per subject.  

 
The EEG data was recorded for 1 minute for each 

class and the duration is for 20 minutes between the rest 
and IM finger movement class. Out of these 20 MI trails, 
two trials data set was set aside for testing and 18 trails 
were used for testing. Each class trial consists of 16 
channel recording of EEG data for 20 minutes.  
 
The trimmed dataset is then separated into testing and 
training data with the ratio of 9:1. After that, cropped 
training algorithm is applied on the dataset to further 
increase the number of testing and training data.  
 

After trimming, the EEG dataset are down sampled 
from 250Hz to 125Hz. During dataset collection, the 
EEG signal values were stored directly into the SD card 
from the EEG headset. Using SD card as storage allows 
more consistent and higher sampling frequency (250Hz) 
as compared with streaming via Bluetooth connection 
and storing the data in computer. However, during online 
classification, the EEG signals are streamed directly into 
the computer via Bluetooth connection at the sampling 
frequency of 125Hz. Therefore, down sampling on the 
EEG dataset is required so that the trained CNN 
classification models can be used in online classification. 
The flow is shown in Fig 6. 
 

Fig 6: Block diagram of classification development  
 
Feature extraction is applied to the EEG dataset 

before training and testing the CNN classification model. 
4 types of CNN classification model are developed in this 
project to classify the EEG signals. These models differ 
with each other in terms of feature extraction requirement 
and the neural network architecture as summarized in 
Table 4. 
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Table 4: Summary of 4 types of CNN classification 
model. The abbreviations used are power spectral density 
(PSD), short-time Fourier transform (STFT), frequency 
band splitting (FBS), standard deviation (STD), 
convolutional (Conv) and fully connected (Fc). 

Model 
Feature Extraction 

Number of 
CNN 
Layers 

PSD STFT FBS Mean STD Conv Fc 
A      2 2 
B x     2 1 
C  x    2 3 
D   x x x 2 2 

 
 Each of the CNN classification model was 
trained with 6 different sets of classes. The first set 
contains 6 classes including thumb, index, middle, ring, 
little and rest MI. The other 5 sets (2 classes) contain the 
combination of thumb, index, middle, ring and little MI 
each with respect to the rest MI. The data from 6 subject 
will be averaged to get the accuracy and the standard 
deviation of each model. Details about the CNN 
classification models and the test results will be discussed 
in section 3.  

2.2.1 Models 

 Model A 
 Model A uses the raw EEG signals, which 
contain the sampled voltage values per unit time for each 
channel, as the input to the CNN architecture. Therefore, 
feature extraction is not required in this model. Instead, 
these features are produced by the filters in the 
convolutional layers during the training process as shown 
in Fig 7. 
 
 

 
Fig 7: Block diagram of Model A. 

 
The CNN architecture of Model A consists of 9 

layers of neural network components as illustrated in Fig 
7. The first convolutional layer Conv1 consists of 68 one-
dimensional filters applied across the temporal axis of the 

EEG signals. This allows the neural network to learn and 
extract the features on the temporal axis for each channel 
on the EEG signals. The feature maps produced by 
Conv1 layer are fed into the second convolutional layer 
Conv2. As shown in Fig 8, this layer consists of 24 one-
dimensional filters applied across the spatial axis on the 
EEG signals. This allows the neural network to learn and 
extract the features related to the spatial information from 
the EEG signals. The fully connected layer Fc3 is added 
to allow the neural network in recognizing more complex 
features. The layers labelled as Fc4 act as the 
classification layer of Model A, with the number of 
output classes as the number of nodes (N). 
 

 
 

Fig 8: Illustration on the filter size with respect to EEG 
signals for each convolutional layer in Model A. 

 
Similar method was applied for the other 3 models. 
Model B, Model C and Model D as describe in Table 4. 
 
2.2.2 Testing of the Proposed Design 

There are 6 subjects participated in the EEG data 
collection for this project. The test for online 
classification requires the participation of the same 
subject in separate session after CNN classification 
models were trained. Therefore, this test could only be 
conducted on one subject due to the limitation of time for 
the subject’s participation. 

4. RESULTS AND DISCUSSIONS 

As shown in Table 5 and Fig 9, model A has the average 
accuracies of 55.46% and 74.17% on the 6-class and 2-
class tests, respectively. Although the accuracy in 2-class 
test is 18.71% higher than the 6-class test. 
 
 
 
 
 
 
 
 



  
 

251 
 

Table 5: Test results of offline classification for Model A. 
 

Subject 
6-Class Model 2-Class Model 

Accuracy (%) Accuracy (%) 

1 62.22 84.00 
2 51.67 65.00 
3 51.67 67.00 
4 54.45 71.00 
5 71.11 89.00 
6 41.67 69.00 
Avg 55.46 74.17 

 

 
Fig 9: Bar chart showing test results of offline 
classification for Model A. 
 

Model B has the average accuracies of 55.64% and 
81.83% on the 6-class and 2-class tests respectively as 
shown in Table 6 and Fig 10. This result indicates that 
Model B is better in performance when classifying lower 
number of classes. 
 
Table 6: Test results of offline classification for Model B 
. 

Subject 
6-Class Model 2-Class Model 

Accuracy (%) Accuracy (%) 

1 73.33 98.00 
2 52.22 77.00 
3 53.33 83.00 
4 54.45 79.00 
5 53.89 83.00 
6 46.60 71.00 
Avg 55.64 81.83 

 

 
Fig 10: Bar chart showing test results of offline 
classification for Model B. 
 

Model C has the average accuracies of 46.48% and 
70% on the 6-class and 2-class tests respectively. 
Although the accuracy in 2-class test is 23.52% higher 
than the 6-class test as shown in Table 7 and Fig 11.  
 
Table 7: Test results of offline classification for Model C. 

Subject 
6-Class Model 2-Class Model 

Accuracy (%) Accuracy (%) 

1 61.11 86.00 
2 30.00 61.00 
3 34.45 63.00 
4 50.56 70.00 
5 66.67 87.00 
6 36.11 53.00 
Avg 46.48 70.00 

 
Fig 11: Bar chart showing test results of offline 
classification for Model C. 
 
Model D has the average accuracies of 69.07% and 
82.83% on the 6-class and 2-class tests respectively as 
shown in Table 8 and Fig 12. The overall result shows 
that Model D has the highest accuracy both 6-class and 
2-class tests. This indicates that the combinations of 
feature extraction techniques with frequency band 
splitting, mean and standard deviation are most 
optimized for MI related EEG classification by using 
CNN architecture as shown in Table 9. 
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Table 8: Test results of offline classification for Model D. 
 

Subject 

6-Class 
Model 2-Class Model 

Accuracy 
(%) Accuracy (%) 

1 78.33 97.00 
2 56.11 75.00 
3 69.45 79.00 
4 71.67 84.00 
5 73.89 88.00 
6 65.00 74.00 
Avg 69.07 82.83 

  

 
Fig 12: Bar chart showing test results of offline 
classification for Model D. 
 
Table 9: Summary of test results for all models in offline 
classification. 
 

Model 
6-Class Model 2-Class Model 

Accuracy (%) Accuracy (%) 

A 55.46 74.17 
B 55.64 81.83 
C 46.48 70.00 
D 69.07 82.83 

 

The consistency of the CNN classification model to be 
implemented across different individuals can be 
indicated by calculating the standard deviation on the 
classification accuracy across each subject as shown in 
Table 10. 
 
Table 10: Standard deviations of classification accuracy 
for each subject. 
 

Model 
Standard Deviation 

6-Class Model 2-Class 
Model 

Average 

A 10.11 9.89 10.00 
B 11.29 18.44 14.86 
C 15.25 13.89 14.57 
D 7.75 8.75 8.25 

 
       The lower the value of standard deviation, the more 
consistent is the CNN model. This is because lower 
standard deviation indicates that the difference in 
accuracies across each subject is low. Therefore, Model 
D has the highest consistency among the other CNN 
classification models. 

4. CONCLUSIONS 

This project contributes to the creation of 4 
techniques to classify the imagery finger movements on 
EEG signals by using the state-of-the-art deep learning 
technology. The best results achieved was 82.83% and 
69.07% in terms of accuracy on classifying the MI of 2 
classes and 6 classes respectively. In addition, this project 
also contributes to the development of EEG classification 
algorithm that is both lightweight and accurate. The 
training, testing and online classification could be run 
entirely on CPU without the need for discrete graphics. 
Hence, the low computational power requirement 
contributes to reducing the cost of BCI solutions and 
making it affordable to more people. Moreover, the low 
computational power requirement also indicates that it is 
possible to integrate the BCI device and classification 
algorithm as a battery-based standalone system, which 
can be useful when being used as the controller for other 
devices. This project has successfully achieved all the 
research objectives. 4 types of CNN based deep learning 
algorithm were developed for classifying the imagery 
finger movement consisting of 6 classes and 2 classes. 
The best results obtained are 69.07% and 82.83% in 
model D, respectively in terms of average accuracy for 6 
classes and 2 classes. It is suggested deep learning 
method with better features and classifiers will further 
improve the accuracy of the results.  
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