
Corresponding author’s E-mail: muto@earth.cs.miyazaki-u.ac.jp, kat@cs.miyazaki-u.ac.jp, kita@sun.ac.jp, yamaba@cs.miyazaki-u.ac.jp,

aburada@cs.miyazaki-u.ac.jp, oka@cs.miyazaki-u.ac.jp
255

Research Article

Expansion of Application Scope and Addition of a Function for
Operations into BWDM which is an Automatic Test Cases
Generation Tool for VDM++ Specification

Takafumi Muto1, Tetsuro Katayama1, Yoshihiro Kita2, Hisaaki Yamaba1, Kentaro Aburada1, Naonobu Okazaki1

1Department of Computer Science and Systems Engineering, Faculty of Engineering, University of Miyazaki, 1-1 Gakuen-kibanadai nishi, Miyazaki,

889-2192 Japan
2Department of Information Security, Faculty of Information Systems, Siebold Campus, University of Nagasaki, 1-1-1 Manabino, Nagayo-cho, Nishi-

Sonogi-gun, Nagasaki, 851-2195 Japan

A R T I C L E IN F O

Article History

Received 25 November, 2021

Accepted 14 September 2022

Keywords

Software testing

Formal methods

Test cases

VDM++

Automatic generation.

A B S TR AC T
The use of the formal specification description language VDM++ in software design can eliminate

ambiguity in the specification. However, software testing after implementation is necessary even

if the design uses VDM++, but manually generating test cases is labor-intensive and time-

consuming. Therefore, our laboratory developed BWDM, which is an automatic test case

generation tool for VDM++ specifications. However, BWDM is not very useful because it has

three problems about its narrow scope of application. This paper solves the three problems and

improves the usefulness of BWDM by expanding the scope of application of VDM++ definitions

and adding a function to generate test cases for object states. In addition, we conducted a

comparison experiment with manual test case generation and confirmed that BWDM can reduce

work time.

© 2022 The Author. Published by Sugisaka Masanori at ALife Robotics Corporation Ltd

This is an open access article distributed under the CC BY-NC 4.0 license

(http://creativecommons.org/licenses/by-nc/4.0/)

1. Introduction

One of the methods to eliminate the ambiguity of

specifications in software design is to use formal methods

for software design[1]. One of the formal specification

description languages is VDM++[2].

On the other hand, software testing after

implementation is necessary for either design using

natural language or formal methods, but manually

generating test cases is labor-intensive and time-

consuming. Therefore, we have developed BWDM,

which is an automatic test cases generation tool for

VDM++ specifications, in our laboratory[3],[4]. BWDM

automatically generates test cases that can be used to

perform boundary value testing, domain analysis testing,

and testing based on structure recognition of if-then-else

expressions.

However, BWDM has the following three problems.

⚫ It does not support conditional expressions for

invariant conditions and pre-conditions and

post-conditions.

⚫ It does not support type definition block.

⚫ It is not possible to generate test cases for

operation definitions that manipulate the

object state.

SUGISAKA
MASANORI

Journal of Robotics, Networking and Artificial Life
Vol. 9(3); December (2022), pp. 255–262

ISSN (Online):2352-6386; ISSN (Print):2405-9021
 https://alife-robotics.org/jrnal.html

https://grp.isbn-international.org/search/piid_solr?keys=sugisaka
http://creativecommons.org/licenses/by-nc/4.0/
https://grp.isbn-international.org/search/piid_solr?keys=sugisaka
https://grp.isbn-international.org/search/piid_solr?keys=sugisaka

256

Because of these three problems, the VDM++

specification targeted by the existing BWDM has many

limitations and is not highly useful. Therefore, to

improve the usefulness of BWDM, this paper extends

BWDM to solve the above three problems.

2. The Extended BWDM

The structure of the extended BWDM is shown in Fig. 1.

2.1. Analysis and Evaluation of Each Conditional

Expressions in the Definition

Existing BWDM has the problem that it does not support

conditional expressions for invariant and pre-conditions

and post-conditions. An example of a VDM++

specification including pre-conditions is shown in List 1.

In List 1, the pre-condition "point <= 100" is

defined, but the existing BWDM cannot generate test

cases with 100 and 101 as inputs, which are the boundary

values of the pre-condition. In addition, when a value

more than 100 is used as input, the pre-condition is not

satisfied, so a test case with "Undefined Actions" as the

expected output should be generated, but the existing

BWDM sets the expected output as "A" and generates an

incorrect test case.

To solve this problem, we extend the Syntax

Analyzer and Test Suite Generator of BWDM.

The Syntax Analyzer is modified to obtain

inputConditions, which store the conditional expressions

needed to determine the input data, and outputConditions,

which are the conditional expressions needed to

determine the expected output. inputConditions store

pre-conditions and invariant conditions of argument type,

and outputConditions store post-conditions. The

inputConditions are passed to the Boundary Value

Analyzer to obtain the input data.

The Test Suite Generator adds a process to evaluate

the conditional expressions of inputConditions and

outputConditions during the process of generating the

expected output. If the conditional expression is false, it

means that the conditional expression set in the definition

is not satisfied at the beginning or end of the process, so

"Undefined Action" is set as an expected output. If the

conditional expression is true, the expected output is the

same as the existing BWDM.

2.2. Support Type Definition Block

Existing BWDM has the problem that BWDM does not

support type definition block. An example of a VDM++

specification including types is shown in List 2.

In List 2, the "MONTH" type is defined and the

argument type of the "determineQuarter" function is of

type MONTH. The existing BWDM does not support

type definitions, so it cannot determine what type the

"month" argument is and cannot generate a test case that

List 1. Example of a VDM++ specification including

pre-conditions

Fig. 1. The structure of the extended BWDM

class GradeEvaluation

 functions

 evaluateGrades : nat -> seq of char

 evaluateGrades (point) ==

 if(point >= 60) then

 if(point >= 70) then

 if(point >= 80) then

 if(point >= 90) then

 "A"

 else

 "B"

 else

 "C"

 else

 "D"

 else

 "F"

 pre point <= 100;

end GradeEvaluation

257

has as input the boundary value of the type and the

boundary value of the invariant condition.

To solve this problem, the Syntax Analyzer is

modified.

In the extended BWDM, the Syntax Analyzer keeps

an abstract syntax tree of type definitions when it

performs abstract parsing. When a type definition is used

in each definition block, the type definition is converted

to the actual type based on this abstract syntax tree.

Furthermore, during conversion, conditional expressions

for invariant conditions are added to inputConditions if

the type to be converted is an argument type of an

operation definition or function definition, or to

outputConditions if it is an instance variable type.

2.3. Addition of a Function to "Generate Test

Cases for the Object State"

Existing BWDM has the problem that it is not possible to

generate test cases for operation definitions that

manipulate the object state, it is not possible to generate

test cases for specifications that manipulate instance

variables. In other words, the existing BWDM only

targets specifications in which the object state is always

constant.

An example of a VDM++ specification including

operation definitions that manipulate the object state is

shown in List 3. In List 3, there is

"payWithCardsAndCoupons" operation that manipulates

the instance variable "coupon" and the instance variable

"cardUsageAmount". When this VDM++ specification is

applied to an existing BWDM, it does not generate a test

case for the "payWithCardsAndCoupons" operation.

To solve this problem, we add a function to generate

"Test Cases for the Object State".

The VDM++ specification sets invariant conditions

for class and type definitions. In addition, it sets pre-

conditions and post-conditions for operations definitions

and functions definitions. The "Test Cases for the Object

State" to be added in this paper is test cases that use these

conditions to generate the expected output of whether the

object state after the operation is "Normal" or "Failure",

or whether there is an error in the input. If there is an error

in the input, the expected output is set to "Undefined

Action" as in the existing test cases generation. Table 1

shows the expected state and the conditions

corresponding to the state.

In generating the test cases, the Test Suite Generator

obtains the object state after the operation by using an

arithmetic expression to be assigned to the instance

variable and the value of the instance variable. After

obtaining the object state after the operation, all

conditional expressions stored in "inputConditions" are

evaluated. If the result is false, "Undefined Action" is set

List 2. Example of a VDM++ specification including types

List 3. Example of a VDM++ specification including

operation definitions that manipulate the object state

 class Payment

types

 public yen = nat;

values

 cardUsageLimit: yen = 100000;

instance variables

 coupon: nat := 8;

 cardUsageAmount: yen := 0;

 inv cardUsageAmount <= cardUsageLimit;

operations

 payWithCardsAndCoupons: yen * nat ==> ()

 payWithCardsAndCoupons(amount, tickets) ==

 (cardUsageAmount :=

 cardUsageAmount + (amount - amount * (tickets

* 0.1));

 coupon := coupon - tickets)

 pre tickets <= 10

 post coupon~ = coupon + tickets;

functions

end Payment

class Quarter

types

 public MONTH = nat1

 inv m == m <= 12;

functions

 determineQuarter : MONTH -> seq of char

 determineQuarter (month) ==

 if(month <= 3) then

 "Q1"

 else

 if(month <= 6) then

 "Q2"

 else

 if(month <= 9) then

 "Q3"

 else

 "Q4";

end Quarter

258

as the expected output. Otherwise, then all conditional

expressions stored in "outputConditions" are evaluated

by applying the object state after the operation. If the

result is false, "Failure" is set as the expected output.

Otherwise, that is both "inputConditions" and

"outputConditions" are true, "Normal" is the expected

output.

3. Application Example

In this chapter, we confirm that the extended BWDM

works correctly by using application examples.

3.1. Confirmation of the Analysis and Evaluation

of Each Conditional Expression in the

Definition.

To confirm that the pre-conditions have been supported,

List 4 shows the output when the VDM++ specification

in List 1 is applied to the extended BWDM.

In test cases No. 5 and 6 in List 4, we can confirm

that they generate test cases with the pre-condition

boundary values 100 and 101 as inputs. In test case No.

6, the expected output is "Undefined Action", which

means that the test case evaluates that the pre-condition

is not satisfied.

In addition, we confirmed that it can generate test

cases for each conditional expression for the VDM++

specification including post-conditions and invariant

conditions.

3.2. Confirmation of Support Type Definition

Block

To confirm that the type definitions are supported, List 5

shows the output when the VDM++ specification in List

2 is applied to the extended BWDM.

Looking at the Argument Type part in List 5, we

can confirm that the "month" argument is determined to

be of type nat1. In test cases No. 5 and 6, we can confirm

that the test cases are generated with 12 and 13 as inputs,

which are the boundary values of the invariant condition

"m <= 12" defined in the type definition "MONTH".

3.3. Confirmation of Addition of a Function to

Generate "Test Cases for the Object State"

To confirm that test cases are correctly generated for

operation definitions that manipulate the object state, List

6 shows the output when the VDM++ specification in

List 3 is applied to the extended BWDM.

In the "payWithCardsAndCoupon" operation of

List 3, if 0 and 10 are used as inputs, the value of the

instance variable "coupon" after the operation will be -2.

Since "coupon" is of type nat and the conditional

expression "0 <= coupon" stored in outputConditions is

false, the expected object state is "Failure". In test case

List 4. Output when List 1 is applied to the extended BWDM Table 1. The expected state and the conditions

corresponding to the states

expected state conditions

Normal All conditionals are true

Failure

The invariant condition of the instance

variables definition is false.

Post-condition is false

The value of the instance variable after the

operation is outside the range of the type.

Undefined

Action

Pre-condition is false

The invariant condition of the type

definition is false

The value is outside the range of the

argument type

Function Name : evaluateGrades

Argument Type : point:nat

Return Type : seq of (char)

Number of Test Cases : 19 cases(BVA:14/SE:5)

Boundary Values for Each Argument

point : 4294967295 4294967294 0 -1 100 101 60 59

70 69 80 79 90 89

Test Cases for Boundary Value Analysis

No.1 : 4294967295 − > Undefined Action

No.2 : 4294967294 − > Undefined Action

No.3 : 0 − > "F"

No.4 : -1 − > Undefined Action

No.5 : 100 − > "A"

No.6 : 101 − > Undefined Action

No.7 : 60 − > "D"

No.8 : 59 − > "F"

No.9 : 70 − > "C"

No.10 : 69 − > "D"

No.11 : 80 − > "B"

No.12 : 79 − > "C"

No.13 : 90 − > "A"

No.14 : 89 − > "B"

259

No. 19 in List 6, the expected object state is "Failure"

with 0 and 10 as inputs, so it can be confirmed that the

test cases for the object state can be generated

appropriately.

4. Discussion

4.1. Evaluation on the Analysis and Evaluation

of Each Conditional Expression in the

Definition.

We have confirmed that the extended BWDM can

generate test cases corresponding to the conditional

expressions in the invariant, pre-condition, and post-

condition. This enables the generation of test cases

corresponding to the conditional expressions set in the

definitions, thus extending the range of applications of

BWDM. Therefore, we can say that the usefulness of

BWDM has been improved.

4.2. Evaluation on Support Type Definition Block

We have confirmed that the extended BWDM can

generate test cases for VDM++ specifications using type

definitions. As a result, the extended BWDM can

generate test cases corresponding to the definitions

described in the type definition block, and the application

range of BWDM has been extended. Therefore, we can

say that the usefulness of BWDM has been improved.

4.3. Evaluation on Addition of a Function to

Generate "Test Cases for the Object State"

We have confirmed that the extended BWDM can

generate "Test Cases for the Object State". As a result,

the extended BWDM can generate test cases for

operation definitions that manipulate the object state,

which the existing BWDM cannot generate. Therefore,

we can say that the usefulness of BWDM has been

improved by the addition of a function to generate "Test

Cases for the Object State" into BWDM.

4.4. Comparison and Verification with Manual

Test Cases Generation

We compared and verified the generation time for "Test

Cases for the Object States" of the extended BWDM with

the manual case. The target VDM++ specification is the

20-line specification in List 3. The results of the

comparative verification are shown in Table 2.

List 5. Output when List 2 is applied to the extended BWDM List 6. Output when List 3 is applied to the extended BWDM

Function Name : determineQuarter

Argument Type : month:nat1

Return Type : seq of (char)

Number of Test Cases : 16 cases(BVA:12/SE:4)

Boundary Values for Each Argument

month : 4294967296 4294967295 1 0 12 13 3 4 6 7 9

10

Test Cases for Boundary Value Analysis

No.1 : 4294967296 − > Undefined Action

No.2 : 4294967295 − > Undefined Action

No.3 : 1 -> “Q1”

No.4 : 0 − > Undefined Action

No.5 : 12 − > “Q4”

No.6 : 13 − > Undefined Action

(- Omission -)

Function Name : payWithCardsAndCoupons

Argument Type : amount:nat tickets:nat

Return Type : ()

Number of Test Cases : 24 cases

Boundary Values for Each Argument

amount : 4294967295 4294967294 0 -1

tickets : 4294967295 4294967294 0 -1 10 11

Test Cases for the Object State

(- Omission -)

No.11 : 0 0 -> Normal

No.12 : -1 0 -> Undefined Action

No.13 : 4294967295 -1 -> Undefined Action

No.14 : 4294967294 -1 -> Undefined Action

No.15 : 0 -1 -> Undefined Action

No.16 : -1 -1 -> Undefined Action

No.17 : 4294967295 10 -> Undefined Action

No.18 : 4294967294 10 -> Failure

No.19 : 0 10 -> Failure

No.20 : -1 10 -> Undefined Action

No.21 : 4294967295 11 -> Undefined Action

No.22 : 4294967294 11 -> Undefined Action

No.23 : 0 11 -> Undefined Action

No.24 : -1 11 -> Undefined Action

260

Manual verification was conducted by a total of five

people, two graduate students, and three fourth-year

undergraduates, and the time required to finish writing all

the necessary test cases was measured. If the test cases

were inaccurate, we pointed out the mistakes, and the

time measurement ended when the subjects wrote the

correct test cases.

In the verification of the extended BWDM, the time

required to run the extended BWDM on the command

line and generate test cases was measured. The computer

used for the verification was Windows 10 Pro OS,

3.6GHz Intel Core i7 CPU, and 16GB memory.

 As shown in Table 2, for the 20-line VDM++

specification, the time required to generate test cases

using the extended BWDM was reduced by about 17

minutes compared to generating test cases manually. In

addition, human error was observed in the manual test

case generation, such as incorrectly calculating the value

of instance variables after the operation.

In the function to generate "Test Cases for the

Object State" added in this paper, it was confirmed that

the time required for test case generation, which was a

feature of the existing BWDM, could be reduced and that

human errors could be eliminated. Therefore, we can say

that the usefulness of BWDM has been improved.

4.5. Related Works

A systematic literature review of research on automatic

test case generation from requirement specifications is

presented by Ahmad Mustafa et al[5]. They identify and

discuss 30 primary studies on requirements-based

generation from 410 studies. One of the significant

lessons learned here is that most software testing errors

can be attributed to errors in natural language

requirements. Discovering ambiguities and

incompleteness in natural language is difficult and is one

of the key problems in natural language requirements.

In addition, most approaches to test case generation

focus on UML as input for a generation[6],[7]. But it is

impossible to capture all of the developed attributes of

the system from the UML.

In contrast, BWDM uses the formal specification

description language VDM++ as input for test case

generation, a language with a clear and rigorous meaning

based on mathematical logic that eliminates the

ambiguities and incompleteness of natural language.

Therefore, BWDM does not have the issues in test case

generation from requirement specifications discussed by

Ahmad Mustafa et al.

Aamer Nadeem et al. proposed a method of

automatic test case generation for VDM++

specifications[8]. The method determines input data

using pre-conditions and invariant conditions described

in the instance variable definition block. The pre-

conditions and invariant conditions are each equivalence

partitioned, and a representative value is determined at

random from the valid input domain as input data. In

addition, a test sequence is generated by preparing a test

descriptor defined as a valid test sequence. After

generating the input data and test sequences, the two are

combined to generate test cases. Here, test descriptors

must be manually prepared.

In contrast, BWDM can generate test cases with

only a VDM++ specification. In addition, test cases

generated by BWDM can be used for boundary value

testing and domain analysis testing. Furthermore, test

cases with symbolic execution can be expected to test

execution flows that cannot be covered by boundary

value analysis.

5. Conclusion

In this paper, to improve the usefulness of BWDM, it has

been extended to solve the three problems.

An example of the application to the extended

BWDM is shown, and it is confirmed that the above three

problems have been solved.

Furthermore, because of comparing and verifying

the time required to generate "Test Cases for the Object

State" manually, we could confirm a reduction of about

17 minutes by using the extended BWDM for the 20-line

VDM++ specification used for the verification. In

addition, human errors were observed in the manual test

Table 2. Comparison of test case generation time

by the extended BWDM and manual test case

generation time for the specification in List 3

 Generation time

Average of 5 subjects 17m19s

BWDM 1.4s

261

case generation, but it was confirmed that human errors

could be eliminated in the test case generation by using

the extended BWDM.

From the above, the BWDM extended in this paper

can be said to have improved its usefulness.

The following is a list of future tasks.

⚫ Support for type other than integer type

⚫ Support for conditional expressions that refer

to the value after the operation

6. References

1. Flemming Nielson, Hanne Riis Nielson: Formal

Methods: An Appetizer. Springer, 2019.

2. Overture Project. Manuals.
http://overturetool.org/documentation/manuals.htm

l. Accessed: 2021-12-13.

3. H. Tachiyama, T. Katayama, T. Oda. Automated

Generation of Decision Table and Boundary values

from VDM++ Specification. The 15th Overture

Workshop: New Capa-bilities and Applications for

Model-based Systems Engineering Technical

Report Series, No. CS-TR-1513-2017, pp. 89-103,

2017.

4. T. Katayama, F. Hirakoba, Y. Kita, H. Yamaba, K.

Aburada, and N. Okazaki. Application of Pirwise

Tsting into BWDM which is a Test Case Generation

tool for the VDM++ Specification. Journal of

Robotics, Networking and Artificial Life, Vol.6,

No.3, pp.143-147, 2019.

5. Ahmad Mustafa, Wan M. N. Wan-Kadir, Noraini

Ibrahim, Muhammad Arif Shah. Automated Test

Case Generation from Requirements: A Systematic

Literature Review. Computers, Materials &

Continua, vol. 67, no.2, pp. 1819-1833, 2021.

6. M. Lafi, T. Alrawashed, A. M. Hammad.

Automated Test Cases Generation From

Requirements Specification, International

Conference on Information Technology (ICIT), pp.

852-857, 2021.

7. Mauricio Rocha, Adenilso Simão, Thiago Sousa.

Model-based test case generation from UML

sequence diagrams using extended finite state

machines. Software Quality Journal, Volume 29,

Issue 3, pp.597–627, 2021.

8. Aamer Nadeem, Muhammad Jaffar-Ur-Rehman.

Automated Test Case Generation from IFAD

VDM++ Specifications. SEPADS 05: 4th WSEAS

International Conference on Software Engineering,

Parallel & Distributed Systems, No.28, pp.1-7,

2005.

Authors Introduction

Yoshihiro Kita

Yoshihiro Kita received a Ph.D.

degree in systems engineering from

the University of Miyazaki, Japan, in

2011. He is currently an Associate

Professor with the Faculty of

Information Systems, University of

Nagasaki, Japan. His research

interests include software testing and

biometrics authentication.

Takafumi Muto

Takafumi Muto received the

Bachelor's degree in engineering

(computer science and systems

engineering) from the University of

Miyazaki, Japan in 2021. He is

currently a Master's student in

Graduate School of Engineering at the

University of Miyazaki, Japan. His

research interests software testing, software quality, and

formal method.

Tetsuro Katayama

Tetsuro Katayama received a Ph.D.

degree in engineering from Kyushu

University, Fukuoka, Japan, in 1996.

From 1996 to 2000, he has been a

Research Associate at the Graduate

School of Information Science, Nara

Institute of Science and Technology,

Japan. Since 2000 he has been an

Associate Professor at the Faculty of Engineering,

Miyazaki University, Japan. He is currently a Professor

with the Faculty of Engineering, University of Miyazaki,

Japan. His research interests include software testing and

quality. He is a member of the IPSJ, IEICE, and JSSST.

https://link.springer.com/book/10.1007/978-3-030-05156-3
https://link.springer.com/book/10.1007/978-3-030-05156-3
http://overturetool.org/documentation/manuals.html
http://overturetool.org/documentation/manuals.html
http://overturetool.org/documentation/manuals.html
https://eprints.ncl.ac.uk/243183
https://eprints.ncl.ac.uk/243183
https://eprints.ncl.ac.uk/243183
https://eprints.ncl.ac.uk/243183
https://eprints.ncl.ac.uk/243183
https://eprints.ncl.ac.uk/243183
https://eprints.ncl.ac.uk/243183
https://www.atlantis-press.com/journals/jrnal/125925497/view
https://www.atlantis-press.com/journals/jrnal/125925497/view
https://www.atlantis-press.com/journals/jrnal/125925497/view
https://www.atlantis-press.com/journals/jrnal/125925497/view
https://www.atlantis-press.com/journals/jrnal/125925497/view
https://www.atlantis-press.com/journals/jrnal/125925497/view
https://www.techscience.com/cmc/v67n2/41326
https://www.techscience.com/cmc/v67n2/41326
https://www.techscience.com/cmc/v67n2/41326
https://www.techscience.com/cmc/v67n2/41326
https://www.techscience.com/cmc/v67n2/41326
https://www.techscience.com/cmc/v67n2/41326
https://ieeexplore.ieee.org/document/9491761
https://ieeexplore.ieee.org/document/9491761
https://ieeexplore.ieee.org/document/9491761
https://ieeexplore.ieee.org/document/9491761
https://ieeexplore.ieee.org/document/9491761
https://ieeexplore.ieee.org/document/9491761
https://link.springer.com/article/10.1007/s11219-020-09531-0
https://link.springer.com/article/10.1007/s11219-020-09531-0
https://link.springer.com/article/10.1007/s11219-020-09531-0
https://link.springer.com/article/10.1007/s11219-020-09531-0
https://link.springer.com/article/10.1007/s11219-020-09531-0
https://link.springer.com/article/10.1007/s11219-020-09531-0
https://dl.acm.org/doi/10.5555/1365774.1365802
https://dl.acm.org/doi/10.5555/1365774.1365802
https://dl.acm.org/doi/10.5555/1365774.1365802
https://dl.acm.org/doi/10.5555/1365774.1365802
https://dl.acm.org/doi/10.5555/1365774.1365802
https://dl.acm.org/doi/10.5555/1365774.1365802

262

1. Hisaaki Yamaba
Hisaaki Yamaba received the B.S.

and M.S. degrees in chemical

engineering from the Tokyo Institute

of Technology, Japan, in 1988 and

1990, respectively, and the Ph D.

degree in systems engineering from

the University of Miyazaki, Japan in

2011. He is currently an Assistant

Professor with the Faculty of

Engineering, University of Miyazaki, Japan. His research

interests include network security and user authentication.

He is a member of SICE and SCEJ.

Kentaro Aburada

Kentaro Aburada received the B.S.,

M.S, and Ph.D. degrees in computer

science and system engineering from

the University of Miyazaki, Japan, in

2003, 2005, and 2009, respectively.

He is currently an Associate

Professor with the Faculty of

Engineering, University of Miyazaki,

Japan. His research interests include

computer networks and security. He is a member of IPSJ

and IEICE.

Naonobu Okazaki

Naonobu Okazaki received his B.S,

M.S., and Ph.D. degrees in electrical

and communication engineering from

Tohoku University, Japan, in 1986,

1988 and 1992, respectively. He

joined the Information Technology

Research and Development Center,

Mitsubishi Electric Corporation in

1991. He is currently a Professor with

the Faculty of Engineering, University of Miyazaki since

2002. His research interests include mobile network and

network security. He is a member of IPSJ, IEICE and

IEEE.

