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A B S TR AC T  
Sign language is an important communication tool for deaf and hearing-impaired people. The 

study of sign language recognition can not only promote the communication between deaf-mutes 

and normal people, but also push the development of intelligent human-computer interaction. 

Sign language recognition based on deep learning has advantages in processing large scale dataset. 

Most of them use 3D convolution, which is not conducive to optimization. In this paper, an 

improved (2+1)D-ResNet model is proposed for isolated word recognition. The model convolves 

the video frame sequence in space and time dimensions and optimizes the parameters respectively. 

Based on CELU activation function, the accuracy of sign language recognition is improved 

effectively. The validity of proposed algorithm is verified on CSL dataset.. 
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1. Introduction 

Sign language is an important tool for deaf-mutes to 

communicate, but most normal people have not learned it, 

which makes it difficult for deaf-mutes to communicate 

with others. 

Different countries and regions use different sign 

language. Even under the same standard, there are great 

difference in action made by different signers because of 

left-handed or right-hander and speed of motion. Besides, 

part of sign language motion is obscured by hands, so sign 

language recognition (SLR) is a very challenging task. 

According to the type of sign language motion, the study 

of SLR can be divided into isolated word recognition and 

sentence recognition. Isolated word recognition 

corresponds to the sign language action of each word. 

Sentence recognition corresponds to the sign language 

action of a sentence, which involves not only the 

sequential connection between words but also the 

grammar of sign language. This paper studies SLR based 

on isolated words. Fig. 1 shows a partial frame of the sign 

language “situation”. 

2. Study on Sign Language Recognition 

The research on SLR can be traced back to the 1980s. 

Traditional SLR methods mainly include Hidden Markov 

 

 

Fig. 1.  Example diagram of sign language 
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Model, Dynamic Time Warping (DTW) and Conditional 

Random Field. Wang et al [1]. achieved 91% recognition 

accuracy in a data set containing 370 words based on 

hidden Markov model and gaussian mixture model. Yan et 

al [2]. improved the traditional DTW by combining 

dynamic trajectory with type information of key sign 

language. It is better than traditional DTW in speed and 

accuracy. 

Traditional methods can only solve the problem of 

SLR in a certain scale dataset. In the current era of big data, 

SLR based on deep learning is mainstream research trend. 

Liu et al [3]. proposed a SLR model based on long 

short-term memory, which took the motion trajectories of 

four joints as input. Using skeleton data alone may ignore 

facial features. Pu et al [4]. obtained the gesture changes 

of the video through 3D-Convolutional Neural Network 

(CNN) and used the shape context to describe the 

trajectory characteristics of the joint to construct a SLR 

system with two-channel data, which achieved good 

results in their self-made data set. However, 3D 

convolution is difficult to optimize, slow and requires high 

hardware. 

3. Sign Language Recognition Model Based on 

Improved (2+1)D-ResNet 

3.1.  (2+1)D convolution 

In static SLR, 2D-CNN plays an irreplaceable role. 3D-

CNN that introduces space-time dimension promotes the 

progress of dynamic SLR. However, both of them have 

shortcomings. 2D-CNN cannot process the information of 

time series. 3D-CNN has many parameters, large 

computation, slow speed and high requirements for 

hardware. 

Based on the above problems, Tran et al [5]. proposed 

a spatio-temporal feature extraction method that optimizes 

the 3D convolution kernel into (2+1)D convolution kernel 

under the situation that 3D convolution has been applied 

to ResNet. 2D network is limited in its ability to process 

video tasks, while 3D network has a large number of 

parameters. Mixed convolution can achieve performance 

equivalent to 3D network with fewer parameters. (2+1)D 

performs structural decomposition of the spatio-temporal 

expression so that additional nonlinearity can be obtained. 

Fig. 2 shows two connection modes of 3D residual 

blocks. Each residual block is composed of two 

convolution layers. If x represents the input data size of 

3×L×H×W, where L represents the number of frames, H 

and W represent the height and width of video frames 

respectively, and 3 is the RGB channel of image, the 

output of ith residual block can be obtained by Eq. (1) 

 ( )1 1; ,i i i iz z F z − −= +  (1) 

where 1iz −  is the output of (i-1)th residual block; 

( )1;i iF z −  is the output obtained through two convolution 

layers and two activation functions. 

When the 3D convolution kernel is split into (2+1)D 

convolution kernel, the hyperparameter Mi is introduced. 

(2+1)D-ResNet uses Mi two-dimensional space 

convolution kernels with size of and Ni-1×1×d×d and Ni 

one-dimensional time convolution kernels with size of 

Mi×t×1×1 to replace Ni three-dimensional convolution 

kernels with size of Ni-1×t×d×d, so as to maintain 

approximately the same number of parameters as the three-

dimensional residual network. Eq. (2) is the relation of 

parameter quantity. iM  can be obtained from Eq. (3). 
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When the input is single channel, the 3D convolution 

kernel and (2+1)D convolution kernel are shown in Fig. 3. 

The left is the 3D convolution kernel with the size of 

t×d×d, where t represents time depth and d represents the 

height or width of the space. The convolution is performed 

in both spatial and temporal dimensions. The right is the 

(2+1)D convolution kernel formed by decomposing 3D 

convolution kernel. The convolution is performed firstly in 

the spatial dimension and then in the time dimension. The 

number of 2D convolution kernel after decomposition is 

Mi. 

The two connection modes in Fig. 2 correspond to the 

two connection modes (a) and (b) in Fig. 4 respectively 

 

(a) Residual connection mode 1 (b) Residual connection mode 2 

Fig. 2.  3D residual block structure 
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after convolution kernel decomposition. The first basic 

block of Conv3_x, Conv4_x and Conv5_x of the model in 

this paper uses the connection mode 2 to change the size 

of the feature map. The other basic blocks all use the 

connection mode 1 as shown in Fig. 4(a). 

3.2. Bach Normalization Layer 

In the training process of neural network, the change of 

parameters of each layer will affect the input of the next 

layer and the data distribution of each batch will also 

change. As a result, the neural network needs to learn 

different data in each iteration, which increases the 

difficulty of network learning and the risk of network 

overfitting. In order to solve the above problems, Ioffe et 

al [6]. proposed a data processing method named Batch 

Normalization (BN) in 2015. Network training generally 

adopts mini-bach training method. The whole data set is 

divided into several batches. Each batch contains multiple 

groups of data. During training, data is input in batches and 

optimized once. The advantage of this is that the data set 

can be optimized multiple times instead of once for each 

iteration, which speeds up the training of the network. 
During each batch operation, two additional parameters 

are introduced to realize the BN operation. Its calculation 

formula is: 
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where Eq. (4) calculates the mean value of data. Eq. (5) 

calculates the variance of input data. Eq. (6) carries out 

data normalization.  is a constant, which is to prevent the 

calculation of Eq. (6) from being invalid when the variance 

is 0. The value is 0.00005. Eq. (7) carries out data offset. 

  and   are the parameters for extension and translation. 

These two parameters are learnable parameters introduced 

into the network by BN. After the normalization of BN 

layer, its distribution will be closer to the origin, so that the 

activation function can obtain a large gradient. The 

distribution of data will also become denser. Dense data is 

easier to fit and less likely to overfit. In addition, the 

distribution of all kinds of data tends to be unified, which 

improves the generalization performance of the network. 

3.3. Optimization of activation function 

The original (2+1)D-ResNet model uses ReLU activation 

function. ReLU is an activation function commonly used 

in neural networks, characterized by fast computing speed 

and good performance. However, when input x<0, the 

function output is 0. The loss gradient disappears during 

back propagation, resulting in the failure of parameter 

updating. To solve this problem, the improved R(2+1)D 

model in this paper selects CELU [7] as the activation 

function. CELU is a continuous and differentiable 

exponential smoothing function with nonlinear turning 

point which is beneficial to the convergence and 

generalization of neural networks. The calculation formula 

of ReLU activation function is shown in Eq. (8). The 

calculation formula of CELU activation function is shown 

in Eq. (9).   is a constant that avoids vanishing gradient. 

In this paper, the value of α of CELU activation function 

 

Fig. 3.  3D convolution kernel and (2+1)D convolution kernel 

 

(a) Residual connection mode 1 (b) Residual connection mode 2 

Fig. 4.  (2+1)D residual block structure 
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is 0.05. The output comparison between ReLU and CELU 

is shown in Fig. 5. 

 ( )  ReLU = 0,x max x  (8) 

 ( )CELU , exp 1 ,
x

x max x 


   
= −   

   
 (9) 

3.4. Improved (2+1)D-ResNet18 model 

There are 18, 34, 50, 101 and 152 layers of networks in the 

ResNet family. We select 18 layers of network to build our 

model. The overall structure of the improved (2+1)D-

ResNet18 model proposed in this paper is shown in Fig. 6. 

The image sequence firstly enters the fully connected layer 

and max pooling layer to extract input features and reduce 

the size of the feature map. Then, features are fed into four 

improved (2+1)D residual blocks successively to extract 

higher-level features. After that, high-level features are 

sent to softmax classifier through average pooling layer 

and fully connected layer for outputting class. 

4. Experimental Results and Analysis 

The data set we used is CSL [8] isolated word sign 

Language dataset from University of Science and 

Technology of China, which contains 500 commonly used 

sign language words. Due to the large amount of original 

data, long training time and high requirements on 

hardware, we selected 100 words for the experiment. Each 

category is recorded by 50 signers for 5 times of sign 

language video, so there are 250 video samples for each 

category. Each sample is composed of 16 frames sampled 

evenly from each video, so there are 100×250=25000 

samples in total. The details of data are shown in Table 1. 

The data set was divided into training set, validation 

set and test set according to the ratio of 7:2:1. There are 

17500 samples for the training set, 5000 samples for the 

validation set, and 2500 samples for the test set. We 

employed uniform sampling method to extract 16 frames 

from every video. The size of original image is 1280×720. 

Since the original image contains a large amount of 

background redundant information, we extracted a 600×

600 area of each image centered on the signer and adjust 

the image size to 224×224 as the network input by using 

 

Fig. 5.  Activation function curves of CELU and ReLU 

 

Fig. 6.  Structure diagram of improved (2+1)D-ResNet18 model 

Table 1.  The number of data used in the experiment 

Class Total Training Validation Test 

1 250 175 50 25 

2 250 175 50 25 

3 250 175 50 25 

…… …… …… …… …… 

100 250 175 50 25 

Total 25000 17500 5000 2500 
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resize function, so as to reduce the amount of network 

input data without losing important information. The 

original images and the preprocessed images are shown in 

Fig. 7 and Fig. 8. The epoch of the experiment was set to 

50. 

In order to verify the effectiveness of the proposed 

algorithm, experiments were carried out on 3D-ResNet18, 

(2+1)D-ResNet18 and the improved (2+1)D-ResNet18 in 

this paper. The experiments were carried out in the same 

experimental environment. Fig. 9 and Fig. 10 show the 

validation result curves of the three models. Fig. 11 is the 

scatter plot of true positive (TP), true negative (TN), false 

positive (FP) and false negative (FN). Table 2 shows the 

accuracy of the three models on the test dataset. 

As can be seen from the curve of validation accuracy, 

3D-ResNet18 has the lowest accuracy, followed by the 

original (2+1)D-ResNet18. Due to the decomposition of 

the convolution kernel that is more conducive to parameter 

optimization, the accuracy of original (2+1)D-ResNet18 

increases significantly faster than that of 3D-ResNet18. 

Our model uses the CELU activation function to achieve 

the highest validation accuracy. And its overall curve is the 

smoothest. In Fig. 10, improved (2+1)D-ResNet18 has the 

fastest speed of loss decreasing and reaches the stable 

value first. Its final value is smaller than the other two 

models. The original (2+1)D-ResNet18 achieves the 

second smallest validation loss. However, 3D-ResNet18 

has the largest loss and the most volatile curve. 

As can be seen from the scatter plots of TP and TN, 

the number of correctly classified samples of (2+1)D-

ResNet18 and improved (2+1)D-ResNet18 is more than 

that of 3D-ResNet18. It is difficult to compare who has the 

most. However, from the average TP (ATP) and average 

TN (ATN) in Table 2, the number of correctly classified 

samples with Improved (2+1) D-ResNet18 is the largest, 

followed by (2+1)D-ResNet18 and 3D-ResNet18 is the 

least. As can be seen from the scatter plots of FP and FN, 

3D-ResNet18 has the largest number of misclassified 

samples. According to the average FP (AFP) and average 

FN (AFN) in Table 2, improved (2+1)D-ResNet18 has the 

smallest number of misclassified samples overall. 

 

Fig. 10.  Validation loss curves of 3D-ResNet18(green), 

(2+1)D-ResNet18(red) and improved (2+1)D-ResNet18(blue) 

 

 
Fig. 7.  Original images 

 

Fig. 9.  Validation accuracy curves of 3D-ResNet18(green), 

(2+1)D-ResNet18(red) and improved (2+1)D-ResNet18(blue)  

 

 
Fig. 8.  Processed images  

Table 2.  Test results of models 

Model Test Accuracy ATP ATN AFP AFN Time/ms 

3D-ResNet18 86.94% 21.69 2471.69 3.31 3.31 33.31 

(2+1)D-ResNet18 87.76% 21.94 2471.94 3.06 3.06 34.29 

Improved (2+1)D-ResNet18 88.92% 22.41 2472.41 2.59 2.59 33.18 
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It can be seen from Table 2 that the test experiment 

obtains similar results to the validation experiment. The 

improved (2+1)D-ResNet18 proposed in this paper has the 

best performance, followed by (2+1)D-ResNet18. The 3D-

ResNet18 has the worst performance. The test accuracy of 

3D-ResNet18 is 86.94%. The accuracy of (2+1)D-

ResNet18 obtained by separating spatial dimension and 

time dimension is 87.76%. The improved (2+1)D-

ResNet18 has the highest accuracy of 88.92%. The CELU 

activation function in the improved model solves the 

problem of gradient disappearance during back 

propagation, thus further improving the accuracy. 

5. Conclusion 

In order to solve the problem of insufficient ability of 2D 

convolution to process sign language video and large 

amount parameters of 3D convolution, this paper proposes 

an improved (2+1)D-ResNet model to recognition isolated 

sign language words. The model performs convolution and 

feature extraction step by step in spatial dimension and 

time dimension. Parameter optimization can be carried out 

in space dimension and time dimension respectively 

during back propagation. In addition, the original ReLU 

activation function is prone to the problem of gradient 

disappearance during the back propagation. We employ 

CELU activation function to introduce nonlinear factors 

into the neural network. When the input is zero, parameters 

can still be updated. The model in this paper achieves an 

accuracy of 88.92% on the CSL dataset, which can 

recognize sign language well.  

In the future work, we will further design and 

optimize the network structure, so that it can’t only 

perform well on the existing data set, but also show good 

performance in the real complex environment. 
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