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ABSTR AC T  
Cross-view image matching for geo-localization is the task of finding images containing the same 
geographic target across different platforms. This task has drawn significant attention among 
researchers due to its vast applications in UAV’s self-localization and navigation. Given a query 
image from UAV-view, a matching model can find the same geo-referenced satellite image from 
the database, which can be used later to precisely locate the UAV’s current position. Many studies 
have achieved high accuracy on existing datasets, but they can be further improved by combining 
different feature processing methods. Inspired by previous studies, in this paper, we proposed a 
new framework by using a channel-based attention mechanism combined with a part-based 
representation learning method, including multi-level feature aggregation and an alternative 
pooling strategy to enhance the feature extracting process. The proposed model significantly 
improved matching accuracy and surpassed the existing state-of-the-art methods on University-
1652 dataset.. 
 
© 2022 The Author. Published by Sugisaka Masanori at ALife Robotics Corporation Ltd 
This is an open access article distributed under the CC BY-NC 4.0 license 
(http://creativecommons.org/licenses/by-nc/4.0/) 
 

1. Introduction 

The applications of unmanned aerial vehicles (UAV) in 
daily life have been rapidly increasing. The UAV has 
become an essential part of various fields such as aerial 
surveillance [1], agriculture [2], transportation, and 
search and rescue missions. Along with their applications, 
to further reduce human’s work, the need for autonomous 
drones has been increasing over time. However, most 
researches failed to achieve a fully autonomous drone 
system, as the most used navigation system (Global 
Positioning System - GPS) has many limitations in real-
life missions. For example, GPS is not powerful enough 
when high buildings or trees block GPS signals, leading 
to difficulties in applying UAVs in cities and urban areas.  
Many solutions for navigation in autonomous drone 
systems have been proposed, and among them, cross-

view image matching-based methods have received lots 
of researchers’ attention due to the vast application value 
in geo-localization [3-6]. Cross-view image matching is 
the task of matching a satellite-view image with 
geographic location tags and a UAV-view image without 
a geographic location tag or vice versa to locate a UAV’s 
position based on information from taken images. Figure 
1 shows an example of cross-view matching methods. 
Given a UAV-view image of a building, the matching 
model searches for the image of that building in the 
satellite-view image gallery. The output is a satellite-
view image similar to the query UAV-view image. This 
output can be used to locate the current position of the 
UAV. 
 

SUGISAKA 
MASANORI 

Journal of Robotics, Networking and Artificial Life 
Vol. 9(3); December (2022), pp. 275–284 

ISSN (Online):2352-6386; ISSN (Print):2405-9021  
 https://alife-robotics.org/jrnal.html 

https://grp.isbn-international.org/search/piid_solr?keys=sugisaka
http://creativecommons.org/licenses/by-nc/4.0/
https://grp.isbn-international.org/search/piid_solr?keys=sugisaka
https://grp.isbn-international.org/search/piid_solr?keys=sugisaka


 

276 

 
Fig. 1: Example of UAV-view → Satellite-view 

 
Early-stage cross-view image matching researches [7] 
focused on using traditional image processing methods, 
which used hand-crafted features from images. In recent 
years, with the rapid development of machine learning 
and deep learning in image processing, especially the 
convolutional neural network (CNN), many studies 
attempted to apply them in cross-view image matching 
for geo-localization, some of which have achieved 
significant results [3,6]. Also, deep learning’s well-
known self-attention mechanisms have been used in 
several cross-view geo-localization studies [8-10] to 
understand image representations further and bridge the 
gap between images from different views. However, the 
self-attention mechanisms are rather complicated and 
usually require lots of computational costs, which may 
not be an ideal method for current UAV systems. Another 
branch of research focuses on learning representations 
based on feature parts; an approach derived from Person 
Re-Identification (Person Re-ID) related research. These 
methods divide feature maps into small part and help the 
models learn sub-salience features in the images. 
However, the feature partition phase in previous works 
usually process only the final feature map of the model 
and ignore the features from shallow layers. Geographic 
targets in the dataset are mainly buildings and roads, so 
we consider low-level features extracted from shallow 
layers may also play an important role in understanding 
the entire view. 
Therefore, different from previous cross-view geo-
localization works which rarely applied attention 
mechanisms and ignored the importance of part-based 
representation learning towards low-level features, in this 
paper we proposed a new framework which used a 
channel-based attention mechanism and implemented a 
part-based representation learning with multi-level 
feature aggregation, and also an alternative pooling 
strategy. Our proposed model has shown an increase in 

performance through experiments compared to the state-
of-the-art method (SOTA) and other existing methods. 

2. Related works 

2.1. Cross-view Image Matching for Geo-
localization 

Previous studies [11][12] in cross-view image matching 
often consider this task as an image retrieval problem 
since they aim to find similar images to a query image 
among an image dataset. In the cross-view matching 
problem, the main task is to learn image representation 
that varies in different views, thus bridging the gap 
between multi-view images. The schematic diagram of 
cross-view matching is described in Figure 2. At first, 
features from query images and a database (gallery 
images) are extracted using different feature processing 
methods. After that, features’ similarities were calculated 
by using distance similarity measures such as cosine 
similarity or Euclidean distance. The results are later 
used to create a ranking list, from which the model will 
determine the true-matched image to the query image. 
The methods used in cross-view geo-localization related 
works can be categorized as below. 

Fig. 2: The schematic diagram of cross-view  
image matching problem (UAV-view → Satellite-view) 

 
Feature Extracting Methods Traditional image 
processing methods such as SIFT [13], or SUFT [14] 
have been implemented in early research for the feature 
extracting phase. However, as the gap between different 
viewpoints is enormous, the images of the same location 
from different views are dramatically different. As a 
result, direct image matching using traditional methods 
tends to fail. Recently, more and more researchers have 
been paying attention to the powerful convolutional 
neural network (CNN), which is well-known for its 
ability to learn high-level features. Workman et al. [15] 
were the first ones that attempted to apply a pre-trained 
CNN (pre-trained AlexNet on ImageNet dataset) to this 
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problem. Their results proved that the features learned by 
this method outperformed hand-crated features from 
traditional methods. Furthermore, in [16], Workman et al. 
continued to increase the matching accuracy by reducing 
the feature distance between pairs of aerial images and 
ground-view images, which boosted the pre-trained 
model’s performance. Hu et al. [17] adapted NetVLAD 
(which is a novel CNN model for image retrieval) into a 
cross-view matching model and achieved competitive 
results on the famous CVUSA [16] dataset. Zhai et al. 
[18] also modified NetVLAD and Siamese network 
architecture to capture the semantic layout of satellite-
view images, which robust the image descriptor in 
retrieving images. Ding et al. [19] considered this 
problem as a place-classification problem and developed 
a ResNet50-based model to solve it. 
  
Metric Learning Loss   Another line of work focused on 
learning discriminative features using metric learning 
and proposing various loss functions. This line of work 
has similar approaches with face verification and Person 
Re-ID problems cause they adopt ranking losses such as 
contrastive loss or triplet loss to learn the relative 
distances between different inputs. By mapping relevant 
features onto their appropriated spaces and learning 
relative distances between different spaces, matching 
models can discriminate images that they have not seen 
before. Inspired by these approaches, Lin et al. [20] 
applied Siamese network architecture and adopted 
contrastive loss to optimize network parameters. Vo and 
Hays [21] proposed soft-margin ranking loss, which was 
an attempt to overcome the margin issues of margin 
triplet loss. Hu et al. [17] improved soft-margin ranking 
loss by introducing weighted soft-margin ranking loss, 
which further reduced convergence in a training phase. 
Different from other works which adopted common 
ranking loss, several researchers [22-24] applied the 
instance loss [25], which is inspired by classification loss, 
and achieved remarkable retrieval results.  
 
Attention Mechanism  Moreover, some works try to 
enhance the feature learning phase by applying the 
attention mechanism. Attention-mechanism is a method 
invented to make neural networks learn the most relevant 
features from inputs, thus increasing the network’s 
learning abilities. Emphasized features extracted by 
attention-mechanism tend to contribute positively 
towards the final prediction result. For example, Shi et al. 

[26] used spatial attention mechanism to enhance the 
performance of cross-view geo-localization model. 
Recently, novel self-attention model in natural language 
processing – Transformer [27] has been applied in in 
numerous of vision processing researches (known as 
Vision Transformer [28]) as well as cross-view geo-
localization related works [8,29,30], and received some 
positive results. However, the disadvantages of 
Transformer architecture are high computational cost and 
a massive amount of data required for training. Famous 
cross-view image datasets [9][16][22] often contain a 
little amount of images, thus it may be difficult to 
properly train a Transformer-based model on these 
datasets. 

2.2. Part-based Representation Learning 

Several studies in fields of computer vision have paid 
attention to part-based representation learning, a feature 
processing method that divides the feature maps into  
small feature parts and supervise them. The fine-grained 
information from splitted parts are expected to help 
models understand comprehensive features of the entire 
image. This method is often seen in Person Re-ID 
researches, as splitting features of human body parts and 
aligning them can help the model extract high-level 
segmentation features. In 2018, the Part-based 
Convolutional Baseline (PCB) [31] greatly surpassed the 
SOTA of  Person Re-ID problem by horizontally divided 
and matched human body’s feature maps. Following the 
idea of PCB,  Luo et al. [32] proposed AlignedReID++ 
which also aligned sliced feature parts to jointly learn the 
global features and local features. In Cross-view geo-
localization, this technique recently becomes popular: 
LPN [24] and MBSA [33] invented square-ring feature 
partition strategies, which encouraged the network to pay 
more attention to fine-grained information from the edge 
of input images. The idea were continuously developed 
in pixel-level: by using VisionTransformer as backbone, 
FSRA [29] and SGM [30] models divided feature maps 
into pixels and re-arranged them based on each pixel’s 
attributes. These achievements in cross-view geo-
localization show promising results in applying part-
based representation learning in cross-view problems. 

2.3. Multi-level Feature Aggregation  

Features from various layers offer varying degrees of 
semantic information. Merging the feature maps from 



 

278 

multiple layers in CNN can result in enhanced feature 
discrimination ability. In general, shallow layer features 
often extract image local structures and fine-grained 
information such as shapes and edges, but they can not 
represent global semantic information and usually 
contain noises. Deeper layer features may provide high-
level global meanings, but lack spatial and detailed 
information. As a result, this technique is commonly 
employed in numerous computer vision applications. 
Multi-level feature aggregation can be implemented by 
developing multiple branches on multi-scale and 
different parts of the model. For example, Kirillov et al. 
[34] fused element-wise operations with different scales 
of feature maps; Li et al. [35] combined multiple 
branches of a network to combine local and global 
features, in order to extract human feature representation. 

3. Materials and Proposed Method 

3.1. Dataset and Evaluation Metrics 

In this work, we use the University-1652 dataset 
published by Zheng et al. [22], as it is the only benchmark 
dataset with both satellite-view and UAV-view images, 
which helps solving cross-view geo-localization for 
UAV navigation. This dataset contains 1652 geographic 
targets from 72 universities all over the world. Each 
target contains three views: satellite-view, UAV-view, 
and street-view. To reduce the high cost in airspace 
control and flying UAV, all UAV-view and street-view 
images were collected by a 3D engine named Google 
Earth, while satellite-view images were captured by 
Google Map. All images in the dataset have geo-tags as 
their class labels. The view of UAVs in Google Earth was 
controlled by simulated camera-view, and the height of 
view descends from 256 to 121.5m. Each target consisted 
of 1 satellite-view image, 54 UAV-view images, and a 
few street-view images.  The dataset was split into the 
training and test sets with no overlapped classes. The 
captured images have an original size of 512 × 512. The 
distribution of data in each set is described in Table 1. 
Samples of images in the dataset were demonstrated in 
Figure 3. 
 

Table 1. Distribution of image data in University-1652. 
 Number 

of 
Images 

Number 
of classes 

Number of 
Universities 

Training 50218 701 33 

Query (UAV) 37855 701 

39 

Query (Satellite) 701 701 
Query (Ground) 2579 701 
Gallery (UAV) 51355 701 

Gallery (Satellite) 951 951 
Gallery (Ground) 2921 793 

Fig. 3: Building’s images from UAV-view (a) and Satellite-
view (b) in University-1652. 

 
Regarding the evaluation metrics, most of the image 
retrieval and cross-view image matching researches has 
been using Recall@K and Average Precision (AP) as the 
main indicator for evaluating proposed systems. 
Recall@K is computed by calculating the ratio of the 
true-matched image in the top-K results of the ranking 
list. On the other hand, AP is a popular metric in 
measuring the precision of a retrieval system. The higher 
Recall@K and AP, the better the model performs. 

3.2. Proposed Method 

The overview of proposed network architecture is 
described in Figure 4. The network was divided into two 
branches for each input; in each branch we deploy our 
proposed feature extractors, and they share the same 
intial weight.  Extracted features from each branch were 
sent to a Classifier module, which is composed of 
multiple Fully Connected layers (FC)  and Classifier 
layers (Cls). From subsection 3.2.1 to 3.2.3, we explain 
the details of our proposed feature extractors in Figure 5. 
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Fig. 4: Proposed network architecture 
 

 
Fig. 5: Proposed feature extractor 

3.2.1. Attention-based Feature Extractor 

Because of excellent accuracy and inference time, other 
existing methods used CNN backbone from ResNet50 
[36] model or VGG16 [37] as the main feature extractor, 
while the usage of attention modules in these backbones 
is rarely seen. However, we believe that an attention 
mechanism can strengthen the saliency value of each 
view and restrain the unnecessary features from affecting 
the final results. Therefore, among various attention 
mechanisms in literature, channel-based attention - the 
SE-block [38] was chosen for its efficiency in reinforcing 
the backbone while requiring very little additional 
computation cost. The SE-block performs channel 
reduction process, which helps re-adjusting the weight of 
each channel and emphasizing meaningful 
channels.Especially, the SE-block could be easily 
implemented in ResNet50’s Residual blocks as described 
in Figure 6. 
 

 
Fig. 6: SE block (left) and its implementation  

in Residual block (right) 

3.2.2.  Part-aware Multi-level Feature Fusion 

Previous works that applied part-based representation 
learning in [24] and [33] proposed a brand new feature 
partition strategy to take advantage of contextual 
information. In particular, the output feature map is 
divided into several parts called square-ring blocks, and 
then the Global Average Pooling method is performed. 
Here we also applied the feature partition strategy that 
creates multi-scale square-ring blocks, which is 
described in Figure 7. 
 

 
Fig. 7: Multi-scale block partition 

 
Especially, previous works only applied this strategy to 
features from the fourth-layer group, while in our 
proposed model the features from other layers (here, we 
chose the third-layer group) were also extracted, and the 
square-ring feature partition strategy was applied to both 
types of features (the blue-color and green-color boxes in 
Figure 5). Furthermore, in previous studies [33], fusion 
of multi-level features contributed greatly to the final 
results; thus, here we also created a global feature map 
which was concatenated by the results of third and 
fourth-layer groups (the red-color box in Figure 5). 
Notice that the stride of the final down-sampling layer 



 

280 

was fine-tuned from 2 to 1 so the features from the fourth-
layer group can have the same size with features from the 
third-layer group. 

3.2.3.  Pooling strategy 

Different from related studies which applied Global 
Average Pooling, in this work Generalized Mean Pooling 
(GeM pooling) was put in practice. GeM pooling was 
first proposed in [39] as an alternative pooling method 
for image retrieval. Since then, it has been widely applied 
in many retrieval systems and achieved promising results. 
The formula of GeM pooling can be defined as follow: 

𝑓𝑓(𝑔𝑔) = [𝑓𝑓1
(𝑔𝑔). . 𝑓𝑓𝑘𝑘

(𝑔𝑔). . 𝑓𝑓𝐾𝐾
(𝑔𝑔)]𝑇𝑇 , 𝑓𝑓𝑘𝑘

(𝑔𝑔)

= (
1

|𝑋𝑋𝑘𝑘|
� 𝑥𝑥𝑝𝑝𝑘𝑘
𝑥𝑥𝑥𝑥𝑋𝑋𝑘𝑘

)
1
𝑝𝑝𝑘𝑘              (1) 

with 𝑋𝑋𝑘𝑘  represents feature map, K is the number of 
channel and 𝑝𝑝𝑘𝑘 is the pooling parameter. Notice that this 
pooling parameter is a learnable parameter: it can be 
manually set or changed through learning process. For 
the concatenated feature map of third and fourth-layer 
group, we applied the Global Max Pooling. 

3.2.4.  Loss Functions and Learning Strategy 

In [22-24], instance loss was adopted to train the multi-
branches networks, and results have shown the good 
effect of this loss function compared to other ranking 
losses in terms of cross-view matching accuracy. 
Instance loss was first proposed in [25], an alternative 
way to learn the distance between features. Extracted 
features from each branch were sent to the shared fully 
connected layer in order to map the features of all sources 
into one shared feature space. Finally, the Cross-Entropy 
loss function was applied to optimize the network. 
Additionally, in [33], Kullback-Leibler divergence (KL 
divergence) was first applied in the training phase. In the 
fields of machine learning, KL divergence is a measure 
of how a probability distribution differs from another 
probability distribution. In this problem, KL divergence 
is expected to close the gap between two different 
domains (UAV and Satellite).  
Here we used the Softmax function to obtain the 
normalized probability scores, and KL divergence was 
then computed and added to the training loss. The KL 
divergence loss formula is defined as follow: 

𝐿𝐿𝐾𝐾𝐾𝐾(𝑝𝑝2||𝑝𝑝1) =  �𝑝𝑝2𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙
𝑝𝑝2𝑛𝑛

𝑝𝑝1𝑛𝑛

𝑁𝑁

𝑛𝑛=1

             (2) 

𝑝𝑝1, 𝑝𝑝2 are predicted results of each branch. 

3.2.5.  Implementation details 

For training, we resize all the input images to the size of 
256 × 256. Random flipping and random cropping were 
used to augment the input images before training. SE-
ResNet50 was pre-trained with the ImageNet dataset. 
The optimizer was Stochastic Gradient Descend (SGD) 
with a momentum of 0.9 and weight decay of 5x10-4. The 
training lasted for 120 epochs, with an initial learning rate 
of 1x10-4 for backbone layers and 1x10-3 for other layers. 
The pooling parameter 𝑝𝑝𝑘𝑘 in GeM pooling was initially 
set to 3. In the testing phase, the classifier layers was 
removed so the model returns only extracted features as 
outputs. Euclidean distance was applied to compute the 
similarity between feature vectors from different views. 
We used Recall@1 (R@1) and AP for evaluating models’ 
performance. To investigate the calculation requirement 
of the proposed method compared with others, we 
calculated the parameters that each model contained and 
the inference time required for retrieving one picture at a 
time. 
 

4. Experiments and Discussions 

We performed training our proposed model with the 
University-1652 dataset and some ablation experiments 
to understand the effectiveness of our model and learning 
strategies towards the results.  

4.1.  Comparison with SOTA and other methods 

In Table 2, we compared our proposed method with the 
SOTA in [33] and other related works. Our model 
achieved 84.51% R@1 accuracy and 86.78% AP on 
Drone → Satellite, 91.01% R@1 accuracy and 82.28% 
AP on Satellite →  Drone data. The performance of the 
method greatly surpassed all the existing competitive  



 

281 

 
models, including the SOTA (MBSA network). 
Especially, this model with channel-based attention 
backbone exceed other works that used novel 
Transformer-based backbones. For the calculation cost, 
although our proposed model was complicated and 
contained a huge amount of parameters (about 43.8 
million), the inference time did not increase much 
compared to other methods (about 1.07 × compared to 
the baseline method). 

4.2. Ablation studies 

4.2.1. SE-block in comparison with other attention 
mechanisms 

To understand the effectiveness of attention mechanism 
used in this work (SE-block) towards the final results, we 
performed several experiments with different attention 
modules which shared the same concept with SE-block. 
BAM (Bottleneck Attention Module) [40] and CBAM 
(Convolutional Block Attention Module) [41] were 
chosen as the comparison targets. Notice that all these 
modules performed better than SE-block in the Large 
Scale Visual Recognition Challenge (ILSVRC) [42]. The 
proposed framework was trained with different attention-
based backbones and the same training conditions. As 
shown in Table 3, for Satellite → UAV (UAV → 
Satellite), the R@1 and AP of the SE-ResNet50-based 
method are higher than ResNet50-based by 1.86% 
(2.42%) and 1.77% (1.13%), respectively. Additionally, 
SE-block achieved the best performance compared to 
ResNet50 other attention-based methods. We assume 
that the attention weight screated by the channel 
reduction process of SE-block has emphsized important 
parts of entire feature maps and greatly made impact on 
the final results. 
 
 
 
 

 
Table 3. Comparison of different attention-based backbone 

Backbone 
University-1652 

UAV → Satellite Satellite → UAV 
R@1 AP R@1 AP 

ResNet50 82.65 85.01 88.59 81.15 
BAM-ResNet50 

[40] 
79.50 82.27 87.73 78.06 

CBAM-ResNet50 
[41] 

83.95 86.32 90.44 82.23 

SE-ResNet50  84.51 86.78 91.01 82.28 

4.2.2. Comparison of different part-aware multi-
level feature 

Does all the feature from shallow layers important? 
Should we applied the feature partition strategy to all 
features from different layers? To answer these question, 
ablation experiments with different levels of feature were 
executed. We use the number 1, 2, 3 and 4 to represent 
which layers group of SE-ResNet50 was applied feature 
partition strategy. For example, (3 + 4) in Table 4 means 
that the features from third and fourth-layer group of SE-
ResNet50 were applied partition strategy (which is also 
our proposed model in Section 3). Table 4 demonstrated 
the experiment results; R@1 and AP drop dramatically 
when using features from first and second-layer group, 
while the combination of third and fourth-layer group 
achieved the best performance. We assume that features 
from first and second-layer group are still not capable of 
represent the meaning of the entire image; thus using 
them in the final feature map could make the model 
behave badly. 
 

Table 4. Comparison of different part-aware multi-level 
feature  

Partition 
Feature on 

Layer 

University-1652 
UAV → Satellite Satellite → UAV 
R@1 AP R@1 AP 

4 82.87 85.13 90.87 82.06 
3 + 4 84.51 86.78 91.01 82.28 

2 + 3 + 4  82.49 84.93 88.30 78.95 
1 + 2 + 3 + 4 77.70 80.67 85.02 75.32 

Table 2. Comparison of proposed method with SOTA 

Method Backbone 
University-1652 

Parameters Inference 
Speed UAV→Satellite Satellite→UAV 

R@1 AP R@1 AP 
Baseline [22] ResNet-50 58.23 62.91 74.47 59.45 26M 1.00 × 
SFPN  [23] ResNet-50 58.49 63.13 71.18 58.74 26M 1.00 × 
LCM [19] ResNet-50 70.29 73.88 79.74 69.40 26M 1.00 × 
LPN [24] ResNet-50 75.93 79.14 86.45 74.49 26M 1.00 × 
LPN [24] ResNet-101 76.13 79.29 85.45 75.45 45M 1.51 × 

FSRA [29] Vision Transformer 84.51 86.71 88.45 83.37 51M 1.05 × 
SGM  [30] SwinTransformer 82.14 84.72 88.16 81.81 28M 1.04 × 
MBSA [33] ResNet-50 82.33 84.78 90.58 82.06 36M 1.05 × 

Ours  SE-ResNet50 84.51 86.78 91.01 82.28 43.8M 1.07 × 
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4.2.3. Comparison of different pooling strategies 

In CNN, pooling method is the key to extract meaningful 
feature and discard irrelevant information. To investigate 
the influence of pooling strategies in our proposed 
method, several experiments with different combinations 
of pooling methods were conducted. In Table 5, Local 
column demonstrated the pooling method used for 
partition features from third and fourth-layer group, 
while Global column described the pooling method used 
for the concatenated feature. 
The experiments’ results in Table 5 demonstrated that 
among all the pooling methods, features extracted by 
GeM Pooling outperformed other pooling methods in 
both tasks. This confirmed the power of GeM Pooling  in 
image retrieval tasks. However, when applied GeM 
Pooling to the concatenated global feature and local 
partition features at the same time,  the accuracy dropped 
off nearly 1~2%. From these results, we assume that 
GeM Pooling performed well in enhancing features 
created by part-based representation learning, while Max 
Pooling may be the better for generalizing concatenated 
features. These findings could be used as references for 
future works which involving part-aware multi-scale 
features. 
 

Table 5. Comparison of proposed method with SOTA 
Pooling Strategy University-1652 

UAV → Satellite Satellite → UAV 
Local Global R@1 AP R@1 AP 

 
Avg 

Avg 83.29 85.75 88.87 80.41 
Max 82.78 85.33 89.30 80.79 
GeM 82.72 85.19 90.01 80.94 

 
Max 

Avg 49.68 54.20 65.34 50.52 
Max 53.26 57.79 67.33 53.35 
GeM 56.43 60.86 69.04 54.29 

 
GeM 

Avg 84.18 86.49 89.44 81.19 
Max 84.51 86.78 91.01 82.28 
GeM 83.81 86.18 89.59 82.26 

4.2.5. Comparison of different input image sizes 

In general, low-resolution images may negatively affect 
the model’s performance but increase the inference time, 
while high-resolution images give models better 
information but take more time for models to process. 
The trade-off between accuracy and speed is a  big 
challenge in developing real-world applications with 
limited computing resources, especially in UAV-related 
applications. Here we used some ablation experiments to 
observe the changes of proposed model in terms of input 
image size. From the results in Table 6, when the 
resolution increases, proposed model’s performance also 
grows. However, in Satellite → Drone task, when the 
resolution changed from 384 to 512, the performance 
decrease a little. These results show that the proposed 

model robursts to the change of resolution, which is 
useful for future UAV applications when selecting input 
image size.  
 

Table 6.  Comparison of different input image sizes 

Method 
University-1652 

UAV → Satellite Satellite → UAV 
R@1 AP R@1 AP 

224 × 224 78.75 81.57 85.45 76.91 
256 × 256 84.51 86.78 91.01 82.28 
384 × 384 87.05 88.96 92.44 84.16 
512 × 512 87.79 89.56 90.87 85.14 

4.3. Qualitative results on 4K-images 

The University-1652 dataset also provided a small 
amount of 4K-resolution images, which were collected 
by real drones flying above several university mentioned 
in University-1652 dataset. Compared to the training-
testing data that were simply collected in 3D simulation, 
these images can be considered as real-world images. To 
confirm the reliability of our proposed framework for 
real-world mission, we visualized the results created by 
our model on these 4K-resolution images in Figure 8 
(Real UAV-view image→ Satellite-view image). The 
true-matched images are in yellow boxes, and the false-
matched images are in blue boxes. Although the Satellite 
gallery only contains one image for each place, which is 
rather hard to find the correct answer, the proposed model 
can still find the accurate matching image. This result 
proved that even our proposed model was trained on 
simulation images, it could perform greatly on real 
images, which shows the capability of applying this 
model in a real UAV missions. 

 
Fig. 8: Top-5 retrieval results of Real UAV-view image → 

Satellite-view image  

5. Conclusion 

Recent years, with the advance of UAV technology, the 
need for autonomous control of UAV is increasing 
rapidly, especially navigating UAV withou GPS signals. 
In this paper, we addressed this problems as a vision 
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processing task in UAV and focused on solving cross-
view image matching tasks for geo-localization. We 
revealed the shortcoming of existing methods, and 
designed a new architecture using a channel-based 
attention network as feature extractors and a part-aware 
multi-level feature learning strategy. The performance of 
model was verified on a benchmark dataset (University-
1652). Experiment results showed that our proposed 
model has an increase in accuracy compared to the 
previous SOTA and other existing methods. As shown in 
ablation experiments, each component in our model 
contributed positively towards the final matching results. 
In future works, to increase the model’s robustness to 
features in cross-view domains, we plan to further exploit 
the partition features from shallow layers of the network. 
Utilizing the network to match the requirements of 
limited computing resource will also be a challenge in the 
next phase of research. 
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