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Modeling the motion of experts in sports is important in demonstrating their motion to beginners. 

A primary approach to this objective is to study the dynamics of a transient response from one 

position to another. Hence, finger-motion analysis is a primitive but crucial step to be considered. 

The state-space representation with a step input is used to eliminate the personal habits of experts 

from their motion and to present simple models to learners according to their learning stages. 

Based on the deterministic realization and N4SID algorithms, two algorithms are developed to 

demonstrate simple motions according to the order of the state-space representation. They are 

applied to the finger motion captured by the Leap Motion Controller. 

 

© 2022 The Author. Published by Sugisaka Masanori at ALife Robotics Corporation Ltd. 

This is an open access article distributed under the CC BY-NC 4.0 license 

(http://creativecommons.org/licenses/by-nc/4.0/). 

 

1. Introduction 

In sports, player movements have been measured using 

sensors. For example, motion sensors were used to 

capture the movements of the golf swing [1],  and 

pressure sensor systems were presented to monitor the 

ankle supination torque during sport motions [2]. A 

wearable inertial sensor network and its associated 

activity recognition algorithm were proposed to 

accurately recognize human activities in daily life and 

sports [3]. Motion capture has also been used to analyze 

sports performance; see a systematic review on the recent 

developments of motion capture systems for the analysis 

of sport performance [4]. Moreover, a system applicable 

to the marker-less sport-movement analysis has been 

presented [5]. 

 

The demonstration of models for learners has proven 

particularly effective in enhancing motor learning [6]. 

Presenting a model of an expert to beginners is therefore 

expected to be effective in learning the motion. However, 

in sports, advanced techniques and skills, including 

individual habits, are extremely complex for beginners. 

Hence, we believe that a simple model that eliminates 

these factors would facilitate motion learning by 

beginners. We therefore introduce the different levels of 

simplification by means of the order of the system. 

 

In this study, we develop mathematical models to provide 

a simplified model for beginners and a complicated one 

for advanced learners. We introduce the state-space 

representation driven by a step input, often used for 

modeling in control engineering [7]. We use the state-

space representation, because it can handle dynamics of 

multiple inputs and multiple outputs, and a simplified 

model can be obtained by reducing the order of the state-

space representation. Moreover, using a step input 

response of the state-space representation, it will be 

possible to develop models of a transient response from 

one position to another such as a crouching start of a 
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short-distance race. As a simple example of motion from 

one position to another, we will model a single grasping 

motion of a hand, because the motions of finger joints are 

related to each other and so are the motions of human-

body joints in the transient response of sports movements. 

 

We will apply the deterministic realization [8] and 

N4SID algorithms [9] to the problem. They are suitable 

for this study, because the order of the model can be 

systematically determined by computing the singular 

value decomposition (SVD) [7]. Since the deterministic 

realization algorithm was developed to determine a state-

space model from an impulse response, we modify the 

algorithm to obtain a state-space model of finger motion. 

Since N4SID is applicable only to data with persistently 

excited inputs, we reconfigure the input and output data. 

We compare these algorithms by applying them to finger-

motion data.  

 

We utilize the Leap Motion Controller (LMC), an optical 

hand tracking module that captures hand movements  

[10]. The accuracy and robustness of the LMC have been 

analyzed [11], and its performance was evaluated using a 

professional, high-precision, fast motion tracking system 

[12].  

 

The remainder of this paper is organized as follows: 

Section 2 describes how the finger motions are measured, 

and Section 3 formulates the problem setting. Sections 4 

and 5 solve the problems using deterministic realization 

and N4SID, respectively. Section 6 presents 

experimental results, and Section 7 concludes the paper.  

2. Measuring Data 

We describe how the finger motions are measured. Fig. 

1(a) and Fig. 1(b) illustrate the start (open hand) and end 

(grasped hand) of transient motion, respectively. The 

LMC can measure 21 finger joints in a three-dimensional 

Cartesian coordinate system, which implies that the LMC 

obtains 63 elements for each sample. Fig. 1(c)  and Fig. 

1(d) present the measuring points and the coordinate 

system, respectively. We define the output 𝑦(𝑡) as 

 

𝑦(𝑡) = [𝑝𝑥(𝑡)⊤ 𝑝𝑦(𝑡)⊤ 𝑝𝑧(𝑡)⊤]
⊤

∈ 𝐑63, 

 

where 𝑝𝑥(𝑡) , 𝑝𝑦(𝑡) , and  𝑝𝑧(𝑡)  ∈ 𝐑21  denote the 

positions in the X-Y-Z coordinates of the 21 joints of the 

fingers, respectively. The positions of finger joints are 

measured over the same sampling period between the 

movement from the open hand to the grasped hand.  

 

 

 

 

 

 

(a) start of measurement        (b) end of measurement 

 

 

 

 

 

 

 

 

(c) measuring points            (d) coordinate system 

Fig. 1 Finger motion and measurement system 

 

We measure the finger positions during the grasping 

motion, using Processing [13] [14]. The time interval 

from the start to end is 1(s), and 100 data points are 

sampled during 1(s). The countdown from 5(s) before the 

start time is displayed on the console.  

3. Problem Setting 

We formulate the problem settings. Suppose that the 

sampling time is ℎ and let 𝑦𝑘  be the coordinate 𝑦(𝑡) at 

𝑡 = 𝑘ℎ: 

 

𝑦𝑘 = 𝑦(𝑘ℎ). (1) 

 

We model 𝑦𝑘  by means of the discrete-time state-space 

representation: 

 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 , (2𝑎) 

𝑦𝑘 = 𝐶𝑥𝑘 + ζ, (2𝑏) 

 

where 𝑥𝑘 is a state of the system, 𝑥0 = 0, ζ is a constant 

vector, and 𝑢𝑘 is as follows: 

 

𝑢𝑘 = {
  0 (𝑘 = −1,  −2,  … )

1 (𝑘 = 0,  1,  2,  … )
(3) 
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We suppose that 𝑘 = 0 when the transient motion starts 

and that there is no explicit delay in starting the finger 

movement after the start time is displayed. We consider 

the following problems: 

 

Problem 1: Find (𝐴 , 𝐵 , 𝐶 , ζ)  within the degrees of 

freedom of similarity transformations, given 𝑦𝑘  in (2) 

and (3). 

 

Problem 2: Suppose that the positions of the finger joints 

are measured as presented in (1). Find a mathematical 

model for 𝑦𝑘  in (2) and (3).  

 

The complexity of the finger-motion model in (2) is 

determined by the size of the matrix 𝐴 or the order of the 

system. The lower the order, the simpler the model is. 

Conversely, the higher the order, the more accurate the 

finger motion is, and the closer the motion is to the 

original one. 

 

By selecting the order of the model (2), we can generate 

samples of the motion of experts for different levels of 

learners. It is expected that beginners will learn the 

motions by simpler dynamical models, whereas 

advanced learners will learn the motions by more 

complex models. It should be noted that the dynamical 

system (2) can model the transition from one point to 

another, although we model finger motions in this study. 

4. Solution via Deterministic Realization 

We solve Problem 1 using the deterministic realization 

algorithm [8] and apply the algorithm to Problem 2. We 

consider Problem 1. Let us describe 𝑦𝑘  for (2) as 

 

𝑦𝑘 = ∑ 𝐶𝐴𝑗−1

𝑘

𝑗=1

𝐵 + ζ, (4) 

 

and let 𝑣𝑘 be as follows (𝑘 ≥ 1): 

 

𝑣𝑘 = 𝑦𝑘 − 𝑦𝑘−1. (5) 

 

The signal 𝑣𝑘 is the difference of the output 𝑦𝑘 . From (4), 

𝑣𝑘 satisfies the following equation: 

 

𝑣𝑘 = 𝐶𝐴𝑘−1𝐵. (6) 

 

For positive integers 𝜏 > 𝑛  and 𝑁 >  𝑛 , define the 

Hankel matrix 𝐻 ∈ R𝜏𝑝×𝑁 from 𝑣𝑘 as follows: 

 

𝐻 = [

𝑣1 𝑣2 ⋯ 𝑣𝑁+1−𝜏

𝑣2 𝑣3 ⋯ 𝑣𝑁+2−𝜏

⋮ ⋮ ⋮ ⋮
𝑣𝜏 𝑣𝜏+1 ⋯ 𝑣𝑁

] . (7) 

 

We also define the extended observability and 

reachability matrices as follows: 

 

𝒪𝜏 = [𝐶⊤ (𝐶𝐴)⊤ ⋯ (𝐶𝐴𝜏−1)⊤]⊤, (8𝑎)

𝒞𝒩 = [𝐵 𝐴𝐵 ⋯ 𝐴𝑁−1𝐵]. (8𝑏)
 

 

From (6), 𝐻 satisfies the following equation: 

 

𝐻 = 𝒪𝜏𝒞𝒩 . (9) 

 

We compute the singular value decomposition (SVD): 

 

𝐻 = 𝑈𝛴𝑉⊤ ≈ [𝑈1 𝑈2] [
𝛴1 0
0 0

] [
𝑉1

⊤

𝑉2
⊤]

= 𝑈1𝛴1𝑉1
⊤,    (10)

 

 

where 𝛴  is a diagonal matrix, and 𝑈  and 𝑉  are 

orthogonal matrices satisfying 𝑈⊤𝑈 = 𝐼  and 𝑉⊤𝑉 = 𝐼 . 

From (9), 𝒪𝜏and 𝒞𝒩 are expressed as 

 

𝒪𝜏 = 𝑈1𝛴1

1
2, 𝒞𝒩 = 𝛴1

1
2𝑉1

⊤. (11) 

 

From (8), 𝐶 and 𝐵 can be obtained as follows: 

 

𝐶 = 𝒪𝜏(1: 𝑝, : ),   𝐵 = 𝒞𝒩(: ,1), (12) 

 

where we use the colon notation [15]. Let us define  𝒪𝜏
↓ 

and 𝒪𝜏
↑ as follows: 

 

𝒪𝜏
↓ = 𝒪𝜏(1: 𝑝(𝜏 − 1), : ), (13𝑎) 

𝒪𝜏
↑ = 𝒪𝜏(𝜏 + 1: 𝑝𝜏, : ).     (13𝑏) 

 

From (8a), we have 

 

𝒪𝜏
↓ = [𝐶⊤ (𝐶𝐴⊤) ⋯ (𝐶𝐴𝜏−2)⊤]⊤, (14𝑎) 

𝒪𝜏
↑ = [(𝐶𝐴)⊤ (𝐶𝐴2)⊤ ⋯ (𝐶𝐴𝜏−1)⊤]⊤, (14𝑏) 

 

and hence  
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𝒪𝜏
↓𝐴 = 𝒪𝜏

↑. (15) 

 

We can thus obtain 𝐴  by solving the least-squares 

method. Let the estimates of 𝐴, 𝐵, 𝐶 and ζ be denoted as 

𝐴̂, 𝐵̂, 𝐶̂, and ζ̂, respectively. By setting the initial state as 

𝑥̂0 = 0, we compute 𝜂𝑘 for 𝑘 = 0, ⋯ , 𝑁 as follows: 

 

𝑥̂𝑘+1 = 𝐴̂𝑥̂𝑘 + 𝐵̂𝑢𝑘 , (16𝑎) 

𝜂𝑘 = 𝐶̂𝑥̂𝑘,        (16𝑏) 

 

where 𝑢𝑘  is the step input in (3). We then have 𝜂𝑘 =

∑ 𝐶̂𝐴̂𝑗−1𝐵 ̂𝑘
𝑗=1  ≈ ∑ 𝐶𝐴𝑗−1𝐵𝑘

𝑗=1  and hence from (4):  

 

ζ = 𝑦𝑘 − ∑ 𝐶𝐴𝑗−1𝐵

𝑘

𝑗=1

≈ 𝑦𝑘 − 𝜂𝑘 

 

We therefore estimate ζ, by averaging 𝑦𝑘 − 𝜂𝑘: 

 

ζ̂ =
1

𝑁 + 1
∑(𝑦𝑘 − 𝜂𝑘)

𝑁

𝑘=0

. (17) 

 

Thus, estimates of (𝐴, 𝐵, 𝐶, ζ) for Problem 1 are obtained 

by (𝐴̂, 𝐵̂, 𝐶̂, ζ̂), and those of 𝑦̂𝑘 in (2) are given by 

 

𝑥̂𝑘+1 = 𝐴̂𝑥̂𝑘 + 𝐵̂𝑢𝑘 , (18𝑎) 

𝑦̂𝑘 = 𝐶̂𝑥̂𝑘 + 𝜁. (18𝑏) 

 

We summarize the above procedure for Problem 1 as the 

following algorithm: 

 

Algorithm based on deterministic realization: 

Step 1: Calculate 𝑣𝑘 in (5). 

Step 2: Construct the block Hankel matrix 𝐻 in (7). 

Step 3: Compute the SVD in (10). 

Step 4: Determine 𝒪𝜏 and 𝒞𝒩 as in (11). 

Step 5: Compute the estimate (𝐴̂, 𝐵̂, 𝐶̂) of (𝐴, 𝐵, 𝐶) from 

(12) and (15). 

Step 6: Obtain an estimate ζ̂ of ζ as (17) and calculate 𝑦̂𝑘 

in (18). 

 

By applying this algorithm to Problem 2, we have 

mathematical models for finger motions. The model is 

simplified by the SVD of the Hankel matrix in (10), and 

the order is determined by the number of the dominant 

singular values. We select the order by choosing the 

number of the non-zero diagonal elements of 𝐻 in (10). 

Thus, we simplify the state-space model (3) and obtain a 

simplified transient movement from the open hand to the 

grasped hand. The lower the order of the state-space 

model is, the simpler the transient motion becomes. 

5. Solution via N4SID 

We solve Problem 1 by using the N4SID algorithm [9]. 

The N4SID algorithm can also systematically determine 

the order of the model by computing the SVD. However, 

N4SID cannot be directly applied to the system in (2). 

Moreover, the input data in (3) do not satisfy the 

assumptions of N4SID. We therefore demonstrate how to 

apply the input-output data to N4SID. 

 

Let the number 𝑁 of given data be as follows: 

 

𝑁 = 2𝜏 + 𝑙 − 1      (𝜏 > 𝑛). (19) 

 

Using the input 𝑢𝑡 and output 𝑦𝑡 , define 

 

𝑈𝑝 = [

𝑢0 𝑢1 ⋯ 𝑢𝑙−1

𝑢1 𝑢2 ⋯ 𝑢𝑙

⋮ ⋮ ⋮ ⋮
𝑢𝜏−1 𝑢𝜏 ⋯ 𝑢𝜏+𝑙−2

],       (20𝑎) 

𝑈𝑓 = [

𝑢𝜏 𝑢𝜏+1 ⋯ 𝑢𝜏+𝑙−1

𝑢𝜏+1 𝑢𝜏+2 ⋯ 𝑢𝜏+𝑙

⋮ ⋮ ⋮ ⋮
𝑢2𝜏−1 𝑢2𝜏 ⋯ 𝑢2𝜏+𝑙−2

] . (20𝑏) 

 

In applying N4SID, the following assumption is made: 

 

rank ([
𝑈𝑝

𝑈𝑓
]) = 2𝜏𝑚, (21) 

 

where 𝑚 = 1 is the size of input. However, the input data 

𝑢𝑡 = 1 in (3) satisfy  

 

rank ([
𝑈𝑝

𝑈𝑓
]) = 1. 

 

We reconfigure the data to satisfy (21). Defining 

 

𝑢𝑘 = 0   (𝑘 = −1, ⋯ , −𝑀), 
𝑦𝑘 = 𝑦0 (𝑘 = −1, ⋯ , −𝑀), 

 

we determine new input and output (𝑘 = 0, 1, . . . , 𝑁 +
𝑀 − 1), respectively: 

 

𝑢̅𝑘 = 𝑢𝑘−𝑀 − 𝜇𝑢, (22𝑎)  
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𝑦̅𝑘 = 𝑦𝑘−𝑀 − 𝜇𝑦, (22𝑏)  
 

where 𝜇𝑢 and  𝜇𝑦 are computed as follows:  

 

𝜇𝑢 =
1

𝑁 + 𝑀
∑ 𝑢𝑡 ,

𝑁−1

𝑡=0

   𝜇𝑦 =
1

𝑁 + 𝑀
∑ 𝑦𝑡

𝑁−1

𝑡=0

,  

 

since N4SID is applied to the input-output data with 

mean zero. Thus, we define the following matrices: 

 

𝑈𝑝 = [

𝑢̅0 𝑢̅1 ⋯ 𝑢̅𝑙−̅1

𝑢̅1 𝑢̅2 ⋯ 𝑢̅𝑙 ̅

⋮ ⋮ ⋮ ⋮
𝑢̅𝜏−1 𝑢̅𝜏 ⋯ 𝑢̅𝜏+𝑙−̅2

],        (23𝑎) 

𝑈𝑓 = [

𝑢̅𝜏 𝑢̅𝜏+1 ⋯ 𝑢̅𝜏+𝑙−̅1

𝑢̅𝜏+1 𝑢̅𝜏+2 ⋯ 𝑢̅𝜏+𝑙̅

⋮ ⋮ ⋮ ⋮
𝑢̅2𝜏−1 𝑢̅2𝜏 ⋯ 𝑢̅2𝜏+𝑙−̅2

] , (23𝑏) 

 

where 𝑙 ̅  =  𝑁 + 𝑀 − 2𝜏 + 1. We construct 𝑌𝑝̅ and 𝑌𝑓̅ in 

the same way, using 𝑦𝑡̅ . Then, we have: 

 

rank ([
𝑈𝑝

𝑈𝑓

]) = 2𝜏, (24) 

 

which satisfies the assumption of N4SID in (21). 

 

We apply N4SID to the input and output data 𝑈𝑝,𝑈𝑓, 𝑌𝑝̅ 

and 𝑌𝑓̅ and explain how to select the order. We define the 

block Toeplitz matrix as follows: 

 

𝒯𝜏 = [

𝐷 0
𝐶𝐵 𝐷

⋮ ⋱ ⋱
𝐶𝐴𝜏−2𝐵 ⋯ 𝐶𝐵 𝐷

] . (25) 

 

We have the following equations: 

 

𝑌̅𝑝 = 𝒪𝜏𝑋̅𝑝 + 𝒯𝜏𝑈𝑝, (26𝑎) 

𝑌̅𝑓 = 𝒪𝜏𝑋̅𝑓 + 𝒯𝜏𝑈𝑓 , (26𝑏) 

 

where 𝑋̅𝑝 and 𝑋̅𝑓 are as follows: 

 

𝑋̅𝑝 = [𝑥̅0 𝑥̅1 ⋯ 𝑥̅𝑙−̅1],        (27𝑎) 

𝑋̅𝑓 = [𝑥̅𝜏 𝑥̅𝜏+1 ⋯ 𝑥̅𝜏+𝑙−̅1], (27𝑏) 

 

and where 𝑥̅𝑘 = 0 (𝑘 = 0, . . . , 𝑀 − 1) and 𝑥̅𝑘 = 𝑥𝑘−𝑀  
(𝑘 = 𝑀, … , 𝑁 + 𝑀 − 1) . We estimate 𝒪𝜏𝑋̅𝑓  based on 

N4SID. Describing the estimate of 𝒪𝜏𝑋̅𝑓  as 𝑂𝑋̅ , we 

calculate the SVD as follows: 

 

𝑂𝑋̅  ≈ [𝑈1 𝑈2] [
𝛴1 0
0 0

] [
𝑉1

⊤

𝑉2
⊤]        

= 𝑈1𝛴1𝑉1
⊤.       (28) 

 

Approximating 𝒪𝜏𝑋̅𝑓 ≈ 𝒪̂𝜏𝑋̂𝑓, 𝒪̂𝜏 and 𝑋̂𝑓 are as follows:  

 

𝒪̂𝜏 ≈ 𝑈1𝛴1

1
2 ,     𝑋̂𝑓 ≈ 𝛴1

1
2𝑉1

⊤. (29) 

 

Using 𝑋̂𝑓,  define the followings: 

 

𝑋̃𝜏 = 𝑋̂𝑓(: ,1: 𝑙 ̅ − 1), (30𝑎) 

𝑋̃𝜏+1 = 𝑋̂𝑓(: ,2: 𝑙)̅.            (30𝑏) 

 

The matrices 𝐴, 𝐵 and 𝐶 are estimated as follows. 

 

[𝐴̂ 𝐵̂] = 𝑋̃𝜏+1 [
𝑋̂𝜏

𝑈𝜏

]

†

, 𝐶̂ = 𝑌̅𝜏𝑋̃𝜏
†, (31) 

 

where (⋅)† expresses the pseudo-inverse. We compute ζ̂ 

from (17) using (𝐴̂, 𝐵̂, 𝐶̂). 

 

We summarize the above procedure for Problem 1: 

 

Algorithm based on N4SID: 

Step 1: Calculate {𝑢̅𝑘 , 𝑦̅𝑘} as (22). 

Step 2: Construct 𝑈𝑝, 𝑈𝑓 , 𝑌̅𝑝 and 𝑌̅𝑓  as (23). 

Step 3: Compute the SVD in (28). 

Step 4: Find an estimate of the state as (29). 

Step 5: Compute the estimate (𝐴̂, 𝐵̂, 𝐶̂) from (31). 

Step 6: Obtain an estimate ζ̂ of ζ as (17). 

 

By applying this algorithm to Problem 2, we also have 

models for finger motions. The model is simplified by 

computing the SVD of the Hankel matrix in (28). It 

should be noted that both algorithms provide simplified 

model based on the SVDs; however, the models obtained 

from them are different, because different matrices are 

used in (10) and (28). Thus, in Section 6, we compare 

different simplifications, using both the algorithms based 

on deterministic realization and N4SID. 

6. Experimental Results 

We demonstrate the algorithms by experimental 

results.We present 𝑝𝑦(𝑡)  at the measuring point 13, 

which is the tip of the middle finger with one of the 

largest motions among the measuring points of fingers. 
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In Fig. 2 and Fig. 3,  the horizontal and vertical axes 

represent the time (s) and position (mm) of 𝑝𝑦(𝑡) , 

respectively. The red lines in Fig. 2 and Fig. 3 indicate 

the position of the original motion, whereas the blue ones 

show models with the order of 4, 7, 12, and 18. Fig. 2 and 

Fig. 3 demonstrate that the output of models (blue lines) 

becomes closer to the original motion (red lines) as the 

order is higher. By comparing blue lines for 𝑛 = 4 and 

𝑛 = 18, it is observed that the motion drawn by the blue 

line for 𝑛 = 4 is much simpler than that for 𝑛 = 18 in 

both Fig. 2 and Fig. 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Modeling based on deterministic realization for 

the different sizes of  𝛴1 ∈ 𝐑𝑛×𝑛 in (10)  (𝑛 =

 4, 7, 12, and 18). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Modeling based on N4SID for the different sizes 

of  𝛴1 ∈ 𝐑𝑛×𝑛 in (28)  (𝑛 =  4, 7, 12, and 18). 

 

We compare the motions provided by the algorithms 

based on deterministic realization and N4SID. The 

reduced-order models (𝑛 = 4, 7)  computed by N4SID 

capture the motion of the finger almost exactly. In 

contrast, the high-order models (𝑛 = 12, 18) given by 

the deterministic realization provide the motion close to 

the original one, although the motion given by the 

reduced-order models (𝑛 = 4, 7)  is far away from the 

original one. From this experiment, we infer that the 

N4SID-based algorithm gives simple models that more 

accurately capture the motion of fingers than the 

deterministic-realization-based algorithm. 

 

We compute the SVDs to obtain simplified models and 

select the order. We show singular values of the matrices 

in (10) and (28) in Fig. 4 and Fig. 5, respectively.  

 

 

 

 

 

 

 

 

 

 

Fig. 4 Singular values (deterministic realization) 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Singular values (N4SID) 

 

7. Conclusions 

We developed mathematical models of finger motions to 

simplify the motion of experts in sports. We solved the 

problem of modeling finger motions based on the step 

response of a state-space representation, by modifying 

the deterministic realization and N4SID algorithms. The 

experimental results demonstrated that the modeling 

methods satisfied the purpose of simplifying complex 

finger motions by reducing the order of the state-space 

representation. By selecting the order, we could select the 
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model of finger motion at different levels including 

simple and accurate motions.  The N4SID-based 

algorithm provided simple models that more accurately 

capture the motion of fingers than the deterministic-

realization-based algorithm. 
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