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PID control is widely used in process systems represented by chemical processes and petroleum 

refining processes. The reason is that PID control has a simple structure. However, most of the 

existing systems are non-linear systems, and it is difficult to always obtain good control results 

with fixed PID control. Therefore, in this study, we propose a method of tuning the PID gain 

according to the deviation (control error) of the control result, and verify the effectiveness of this 

method through experiments. For self-tuning PID control using a local linear model, we propose 

a program that performs PID tuning only when the deviation occurs with a certain magnitude. A 

simulation is performed on the Hammerstein model, which is a non-linear system. As a result of 

the experiment, the number of PID gain changes could be significantly reduced. 

 

© 2022 The Author. Published by Sugisaka Masanori at ALife Robotics Corporation Ltd. 
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1. Introduction 

PID control [1],[2] is widely used in industries, including 

process systems such as chemical processes and 

petroleum refining processes, because it has a simple 

structure and its physical interpretation is clear. However, 

the characteristics of many existing systems vary 

according to environmental and operating conditions and 

include nonlinear systems. Therefore, it is difficult to 

obtain accurate control results with fixed PID control. 

Consequently, machine learning and data-driven [3],[4] 

control methods have been proposed to effectively 

control nonlinear systems. However, in these methods, 

PID tuning is performed step by step; hence, the 

computational processing load is high, and the processing 

can be performed using only a high-precision computer.  

In this paper, we developed a method for tuning the PID 

gain only when the control result does not follow the 

target value. In the proposed method, a threshold is set 

for the deviation, and PID control is performed only 

when the threshold is exceeded. If the deviation is smaller 

than the threshold value, control is performed without 

changing the PID gain. We performed simulations on a 

bilinear model, which is a nonlinear system, and verified 

the effectiveness of this method when focusing on the 

reduction of computational load and control results. We 

propose a method for tuning the PID gain according to 

the deviation (control error) of the control result and 

verify its effectiveness based on numerical examples. 

2. A design of a self-tuning control system using 

a local linear model that performs PID tuning 

according to deviation 

Fig. 1 shows a block diagram of the proposed control 

system. The authors have previously proposed a method 

for calculating control parameters using the concept of 

the local linear model [5]. This method can control a 

nonlinear system by locally establishing a linear model. 
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In the proposed control method, the deviation is 

evaluated for a self-tuning control system using a local 

linear model. The nonlinear system is controlled by 

performing PID tuning only when a deviation occurs to a 

certain magnitude. 

2.1. System description 

First, consider the discrete-time nonlinear system 

represented by 

y(t) = f(φ(t − 1))                                                (1) 

where, y(t) represents the system output and f(∙) 

represents the nonlinear function. Also, φ(t-1) represents 

the state of the system before time t-1 (historical data) 

and is called the information vector. The information 

vector φ(t-1) is defined by the following equation. 

φ(t − 1) ≔ [y(t − 1), y(t − 2), ⋯ , y(t − 𝑛𝑦)  

u(t − 1), u(𝑡 − 2), ⋯ , u(t − 𝑛𝑢) ]  (2) 

Furthermore, u(t) is the control input, and 𝑛𝑦 and 𝑛𝑢 are 

the orders of the output and input, respectively. Now, 

suppose that the nonlinear system represented by 

equation (1) can be locally represented by a linear model 

as follows 

𝐴𝑖(𝑧−1)y(t) = 𝑧−(𝑘𝑚+1)𝐵𝑖(𝑧−1)𝑢(𝑡)  

(i = 1,2, ⋯ , N)                      (3) 

where, in Eq. (3), km represents the minimum estimate 

of the lag time, and when the lag time is known, km is set 

to that value; when the range of the lag time is unknown, 

k𝑚 is set to 0. Furthermore, 𝑧−1 represents a time-delay 

operator, meaning 𝑧−1𝑦(𝑡) = 𝑦(𝑡 − 1) . Also, A(𝑧−1) 

and B(𝑧−1) are given by 

A𝑖(𝑧−1) = 1 + 𝑎𝑖,1𝑧−1 + ⋯ + 𝑎𝑖,𝑛𝑦
𝑧−𝑛𝑦                    (4) 

B𝑖(𝑧−1) = 𝑏0 + 𝑏𝑖,1𝑧−1 + ⋯ + 𝑏𝑖,𝑛𝑢
𝑧−𝑛𝑢                    (5) 

After the above preparation, the controller is designed for 

the local linear model. 

 

2.2. Controller Design 

Design the controller based on the following steps. 

[STEP1] Construction of multiple linear models 

For the nonlinear model, multiple linear models are 

constructed, system identification is performed using the 

lumped least squares method, and the parameters of 

𝐴𝑖(𝑧 − 1) and 𝐵𝑖(𝑧 − 1) (i = 1, 2, - - - , N; where i takes 

these values unless otherwise noted) included in the 

linear model of Eq. (3) are estimated. ) parameters in the 

linear model. 

[STEP2] Design of control system 

For the linear model represented by Eq. (3), consider the 

feedback control law given by Eq. 

0)()1()()()()( 11 =−+ −− trRtuzStyzR
  (6) 

where, r(t) represents the target value at step t. R(𝑧−1) 

and S(𝑧−1)are polynomials designed based on the pole 

configuration of the closed-loop system, respectively. 

1

1,

1

1,0,

1)(
n

niiii zrzrrzR
−−− +++=   

2

2,

1

1,

1 1)(
n

niii zszszS
−−− +++=   

R(𝑧−1)  and S(𝑧−1)  are designed based on the pole 

placement method. In this case, the input-output relation 

of the closed-loop system composed of equations (3) and 

(6) is expressed by the following Eq. 
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The denominator polynomial P(𝑧−1) of Eq.(8) is defined 

by the following Eq. 

)()(:)( 111 −−− = zSzAzP ii
 

)()( 11)1( −−+−
+ zRzBz ii

km      (9) 

It can be seen that P(𝑧−1)  is the characteristic 

polynomial of the closed-loop system. The following 

equation is used to design this polynomial. 
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Fig. 1 Block diagram 
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σ indicates a parameter corresponding to the rise time, 

and μ  is a parameter related to the damping 

characteristics of the response, which is adjusted by δ. 

Here, R(𝑧−1) and S(𝑧−1)  are calculated based on Eq.(9). 

In order to obtain R(𝑧−1)  and S(𝑧−1)  uniquely, it is 

necessary to set their orders to 𝑛1 = 𝑛𝑦 and 𝑛2 = 𝑛𝑢 +

𝑘𝑚, respectively. In this way, the pole placement control 

system can be designed for each linear model. 

[STEP3] Replacement with PID controller 

We have described a control method based on the pole 

placement method. This method can be replaced by a 

design method based on PID control if it is considered in 

the same way as in Eq.(6). First, consider the PID control 

law of the following Eq. 

)()()()( 2 tyKtyKteKtu DPI

−−−=  (12) 

where, 𝐾𝑃 , 𝐾𝐼 , and 𝐾𝐷  represent the PID gain, 

respectively. Furthermore, e(t) is the control deviation, 

which is given by the following Eq. 

)()(:)( tytrte −=            (13) 

Now, Eq.(6) is rewritten as follows 
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In this case, from equations (12) and (14), the PID 

parameter is given by 
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The above allows us to adjust the PID parameters based 

on the approximate pole configuration. 

2,1,1: ii ss ++=          (16) 

[STEP4] Calculation of weights 

Next, for each local linear data calculated in [STEP2], the 

estimation error 𝜀𝑖(𝑡) is calculated for each model, and 

the weight ω𝑖  is calculated based on this. 𝜀𝑖(𝑡)  is the 

error between the system output value y(t) and the 

estimated output value ŷ(t) of each linear model. Here, 

ŷ(t) is calculated based on equation (3) by the following 

formula 
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where, A_i (z^(-1)) and B_i (z^(-1)) are the system 

parameters of each linear model estimated in [STEP1]. 
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In addition, ω𝑖(𝑡)  is the weight corresponding to the 

selected i-th information vector. The smaller the 

difference between the actual outputs value of the system 

and each linear model, the larger the value of this weight. 

Note that the calculation of ω𝑖(𝑡) based on equation (18) 

satisfies the following Eq. 
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[STEP5] Generation of weighted PID parameters 

 Using the weights obtained in [STEP4] and the PID 

parameters in Eq.(15), calculate the weighted PID 

parameters using the following Eq. 
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3. PID tuning method in response to deviation 

We explain how to perform PID tuning only when the 

deviation reaches a particular magnitude with respect to 

the competitive tuning PID control using the local linear 

model in Section 2.2. First, the threshold is defined as τ. 

The condition for τ is expressed by the following 

equation. 

. 
𝜏 > |𝑒(𝑡)| (23) 

The PID control described in Section 2.2 is performed 

only when this condition is satisfied, and the control is 

performed without changing the PID gain if it is not 

satisfied. Here, the parameter τ included in Eq. (23) 

denotes the design parameter given by a certain positive 

constant. Setting this parameter requires trial and error. 

4. Simulation 

In order to verify the effectiveness of this method, a 

numerical example for a nonlinear system is presented. 

The Bilinear model is used as the control target. The 

Bilinear model, which is expressed by the following 

equation, is considered as the control target. 

)1(3.0)2(99.0)1(4.0)( −+−−−= tutytyty  

(15) 
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 (24) 

However, ζ(t) is a Gaussian white noise with mean 0 and 

variance 0.012. The target value is given as follows. 

𝑟(𝑡) = {

1.0(0 ≤ 𝑡 < 100)       
−1.0(100 ≤ 𝑡 < 200)  

3(200 ≤ 𝑡 < 300)

6(300 ≤ 𝑡 ≤ 400)

(25) 

Next, based on the static characteristics, a linear model 

corresponding to the control input range is constructed as 

follows. However, the number of divisions is set to N=3. 

The various design parameters included in this method 

are 𝑛𝑦 = 2, 𝑛𝑢 = 1, and 𝑘𝑚 = 0. 
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Furthermore, the threshold τ for determining PID tuning 

is set to 0.1. Also, the number of experiments is 400. 

Fig.2 shows the control results obtained using the 

proposed method. Fig.3 shows the temporal change in 

PID gain. The points shown in Fig. 2 indicate that the PID 

gain is tuned. Based on the results in Fig. 2 and Fig. 3, 

the control results of the conventional data-driven type 

and the proposed method are compared, and it is 

confirmed that the difference is slight. However, the 

number of changes in the PID gain needs to be varied 400 

times because the conventional method tunes the PID 

gain sequentially. Using the proposed method, the 

number of changes was 56, which was approximately 1/7 

of that of the conventional method; this is a significant 

decrease in the number of PID gain changes. This result 

suggests that the computational cost can be significantly 

reduced and can be implemented on a low-function 

computer. 

5. Conclusions 

In this paper, we present a self-tuning control system 

using a local linear model that performs PID tuning 

according to the deviation for a nonlinear system. 

Specifically, we propose a method that defines a 

threshold value and changes the PID gain to control only 

when the conditions related to the threshold value are 

satisfied. In addition, a simulation was performed on the 

bilinear model, a nonlinear system, to verify the 

effectiveness of the proposed method. In the future, we 

plan to evaluate the control performance of the deviation 

threshold setting using the item response theory. 
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