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ABSTR AC T  
The authors have investigated a high-accuracy analysis for the electromagnetic field of anatomical 
human body models using the parallel finite element method. In the full-wave electromagnetic 
field analysis by the parallel finite element analysis with anatomical human models, efficient 
conversion from voxels to finite element meshes and speed-up of an analysis become important 
topics. In this paper, we propose parallel mesh generation method with mesh smoothing, and show 
to be able to generate large-scale mesh very effective. Then, we evaluated the performance of two 
kinds of iterative method by numerical experiments using large-scale human body model. As the 
results, the COCR method is very useful as the interface solver in the DDM for high-frequency 
electromagnetic field analysis using anatomical human model. 
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1. Introduction 

Recently, a numerical electromagnetic analysis using 
anatomical human model from CT/MRI is required 
strongly[1],[2]. Important topics in numerical 
electromagnetic field analysis using numerical human 
body model are efficient conversion from voxels to finite 
element meshes and speed-up of analyses.  
     In our research group, we are investigating and 
developing a full-wave electromagnetic analysis method 
for large-scale analysis that has several hundred million 
meshes based on the parallel finite element method [3]. 
To apply the parallel finite element analysis code in the 
computation using the anatomical human model, a 
parallel mesh generation algorithm and a mesh 
smoothing function are verified in the viewpoint of 
accuracy and performances using a super computer 
system. 

     On the other hand, the high-frequency 
electromagnetic problem with our formulation is 

complex symmetric, and we have employed the 
conjugate orthogonal conjugate gradient (COCG) 
method for the interface problem. However, because of 
the ill-conditioned coefficient matrix of the large-scale 
analysis, it suffers from low convergence rate. To solve 
this issue, we propose a domain decomposition method 
(DDM) algorithm based on the conjugate orthogonal 
conjugate residual (COCR) method [4]. As shown in this 
paper, in order to verify the accuracy of the developed 
analytical solver, we calculate TEAM Workshop #29, 
which is a benchmark problem, and evaluate the accuracy 
of the analytical solver. Moreover, an improvement of the 
performance by using COCR method with huge-scale 
anatomical human model that has 1,700 million meshes 
is revolutionary in huge-scale analyses.  

 

2. Formulations 
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2.1. Governing equations 

Let Ω be a domain with a boundary 𝜕𝜕Ω. The vector 
wave equations [5] that describe an electromagnetic field 
with a single angular frequency ω (rad/s) are derived 
from Maxwell’s equations containing the displacement 
current. The vector wave equations describing an electric 
field E (V/m) are given by Eqs. (1a)-(1c) for a current 
density J (A/m2) with j as an imaginary unit: 

 
curl �1

𝜇𝜇
 curl 𝐄𝐄� − 𝜔𝜔2𝜀𝜀𝐄𝐄 − 𝑗𝑗𝜔𝜔𝑗𝑗𝐄𝐄 = 𝑗𝑗𝜔𝜔 𝐉𝐉    in Ω ,     (1a)  

          
𝐄𝐄 × 𝐧𝐧 = 𝟎𝟎   on ∂Ω ,                               (1b) 

 
Permittivity and permeability are given by ε (F/m) and 
μ (H/m), respectively. By solving Eq. (1a) under the 
essential boundary condition in (1b), the electric field E 
is calculated.  
     Magnetic fields are calculated by a post-process using 
Faraday's law of induction, which is expressed by Eq. (2). 
 

rot𝐄𝐄 − 𝑗𝑗𝜔𝜔𝜇𝜇𝐇𝐇 = 𝟎𝟎                                (2) 

2.2. Finite element formulation 

Here, we describe the finite element discretization. 
The electric field E is approximated with Nédélec 
elements (edge elements). The finite element 
approximation is performed as follows. 
    Find Eh such that 

� �1 μ� �rot𝐄𝐄𝐡𝐡 ∙ rot𝐄𝐄𝐡𝐡∗
 Ω

𝑑𝑑𝑑𝑑 − 𝜔𝜔2� 𝜀𝜀𝐄𝐄𝐡𝐡 ∙ 𝐄𝐄𝐡𝐡∗
 Ω

𝑑𝑑𝑑𝑑

= 𝑗𝑗𝜔𝜔� 𝐉𝐉 𝐡𝐡 ∙ 𝐄𝐄𝐡𝐡∗
 Ω

𝑑𝑑𝑑𝑑.                     (3) 

Here, Jh is an electric current density approximated by 
the conventional piecewise linear tetrahedral elements. 

 

3. Parallel algorithms for solving large linear 
system 

3.1. Domain decomposition method 

The domain decomposition method (DDM) is 
introduced to high-frequency problems using the E 
method. Let us put the finite element equations of (3) in 
matrix form, as follows: 

 
                                𝐾𝐾𝐾𝐾 = 𝑓𝑓,                                    (4)  

 

where K denotes the coefficient matrix, u the unknown 
vector, and f the known right-hand side vector. As shown 
in the following equation, the domain Ω is decomposed 
into N pieces so that there is no overlap in the boundary 
between subdomains, namely 
 

.           

Ω = �    Ω(𝑖𝑖).
𝑁𝑁

𝑖𝑖=1

                      (5)   

                    
 
After domain decomposition, (4) is rewritten as follows: 
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                                                          (6) 

                                                                                               
where the subscripts I and B correspond to unknowns in 
the interior of subdomains and on the interface boundary, 
respectively. 𝑅𝑅𝐼𝐼

(𝑖𝑖)  maps the global degrees of freedom 
(DOF) of the interface onto the local DOF of the 
subdomain interface. Equation (6) leads to linear systems 
as follows: 
 
      𝐾𝐾𝐼𝐼𝐼𝐼

(𝑖𝑖)𝐾𝐾𝐼𝐼
(𝑖𝑖) = 𝑓𝑓𝐼𝐼

(𝑖𝑖) − 𝐾𝐾𝐼𝐼𝐼𝐼
(𝑖𝑖)𝑅𝑅𝐼𝐼

(𝑖𝑖)𝐾𝐾𝐼𝐼 , 𝑖𝑖 = 1, … ,𝑁𝑁 ,          (7)  
 

𝑆𝑆 𝐾𝐾𝐼𝐼 = 𝑔𝑔 ,   (8) 
 

𝑆𝑆 = �𝑅𝑅𝐼𝐼
(𝑖𝑖)𝑇𝑇𝑆𝑆(𝑖𝑖)𝑅𝑅𝐼𝐼

(𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

, 

𝑆𝑆(𝑖𝑖) = 𝐾𝐾𝐼𝐼𝐼𝐼
(𝑖𝑖) − 𝐾𝐾𝐼𝐼𝐼𝐼

(𝑖𝑖)𝑇𝑇�𝐾𝐾𝐼𝐼𝐼𝐼
(𝑖𝑖)�

−1
𝐾𝐾𝐼𝐼𝐼𝐼

(𝑖𝑖),                 (9)                                              
 

𝑔𝑔 = �𝑅𝑅𝐼𝐼
(𝑖𝑖)𝑇𝑇𝑔𝑔(𝑖𝑖)

𝑁𝑁

𝑖𝑖=1

, 

𝑔𝑔(𝑖𝑖) = 𝑓𝑓𝐼𝐼
(𝑖𝑖) − 𝐾𝐾𝐼𝐼𝐼𝐼

(𝑖𝑖)𝑇𝑇�𝐾𝐾𝐼𝐼𝐼𝐼
(𝑖𝑖)�

−1
𝑓𝑓𝐼𝐼

(𝑖𝑖) .              (10)  
 

We call (7) the subdomain problems, (8) the interface 
problem, 𝑆𝑆 the Schur complement matrix. In this paper, 
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(7) are solved by the direct method based on Gaussian 
elimination, on the other hand, (8) is solved by the 
iterative methods. Here, the Krylov subspace methods 
require the coefficient matrix-vector multiplication in 
each iterative procedure, however, such calculation for 
(8) can be replaced by likely solving subdomain 
problems. Therefore, in our DDM algorithm, subdomain 
problems are also solved at each iteration for solving the 
interface problem. 

3.2. COCG method 

In this paper, we introduce two kinds of iterative 
methods for the subdomain problems and the interface 
problem. Firstly, Fig. 1 shows the preconditioned COCG 
method. In Fig.1, 𝑀𝑀  is the preconditioning matrix, 
(𝑥𝑥,𝑦𝑦) = ∑ �̅�𝑥𝑖𝑖𝑦𝑦𝑖𝑖m

i=1  an inner product of complex vectors 𝑥𝑥 
and 𝑦𝑦, ‖∙‖ the Euclidean norm, and 𝛿𝛿 a positive constant 
as the convergence criterion. 

 

  
Fig. 1.  Algorithm of preconditioned COCG method. 
 

3.3. COCR method 

The preconditioned COCR method [4] is shown in Fig. 
2. [6] The COCR method requires more or less the same 
amount of computational cost and working memory per 
iteration as the COCG method, and is expected to get 
smooth convergence behavior compared with the COCG 
method. In particular, the COCR method for (8) has more 
effect than the COCG method in a large-scale analysis. 
 

 
Fig. 2.  Algorithm of preconditioned COCR method. 
 

4. Accuracy verification 

4.1.  TEAM29 

We analyze TEAM Workshop #29[8] in order to 
verify the accuracy of the developed analytical solver.2 
TEAM 29 is a benchmark problem and involves a 
resonator model.  
 

 
Fig. 3. TEAM 29 cavity resonator model. 
 
Table 1.  TEAM 29 model data. 

No. of Elements DOFs No. of Subdomains 

121,277 149,668 100×7 

 
The resonator is cylindrical and has a diameter of 1.9 

[m] and a height of 1.45 [m]. In the analysis, a dielectric 
phantom having a relative permittivity εr of 80 and an 
electric conductivity σ of 0.52 [S/m] is positioned, and 
the resonance state is investigated. The analysis domain 

  𝐾𝐾𝐼𝐼0 ∶ an initial guess 
   𝑟𝑟0 = 𝑔𝑔 − 𝑆𝑆𝐾𝐾𝐼𝐼0  
   𝑧𝑧0 = 𝑀𝑀−1𝑟𝑟0 
  𝑝𝑝0 = 𝑧𝑧0 

   𝑓𝑓𝑓𝑓𝑟𝑟 𝑛𝑛 = 0,1, … 
     𝑞𝑞𝑛𝑛 = 𝑆𝑆𝑝𝑝𝑛𝑛 
     𝛼𝛼𝑛𝑛 = (�̅�𝑟𝑛𝑛 , 𝑧𝑧𝑛𝑛) (�̅�𝑝𝑛𝑛 ,𝑞𝑞𝑛𝑛)⁄  
     𝐾𝐾𝐼𝐼𝑛𝑛+1 = 𝐾𝐾𝐼𝐼𝑛𝑛 + 𝛼𝛼𝑛𝑛𝑝𝑝𝑛𝑛 
     𝑟𝑟𝑛𝑛+1 = 𝑟𝑟𝑛𝑛 − 𝛼𝛼𝑛𝑛𝑞𝑞𝑛𝑛 
     𝑖𝑖𝑓𝑓 (‖𝑟𝑟𝑛𝑛+1‖ ‖𝑟𝑟0‖ < 𝛿𝛿⁄ )  𝑏𝑏𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏; 
     𝑧𝑧𝑛𝑛+1 = 𝑀𝑀−1𝑟𝑟𝑛𝑛+1 
     𝛽𝛽𝑛𝑛 = (�̅�𝑟𝑛𝑛+1, 𝑧𝑧𝑛𝑛+1) (�̅�𝑟𝑛𝑛 ,𝑧𝑧𝑛𝑛)⁄  
     𝑝𝑝𝑛𝑛+1 = 𝑧𝑧𝑛𝑛+1 + 𝛽𝛽𝑛𝑛𝑝𝑝𝑛𝑛 

  𝐾𝐾𝐼𝐼0 ∶ an initial guess 
   𝑟𝑟0 = 𝑔𝑔 − 𝑆𝑆𝐾𝐾𝐼𝐼0  
   𝑡𝑡0 = 𝑀𝑀−1𝑟𝑟0 
  𝑝𝑝−1 = 0, 𝑞𝑞−1 = 0, 𝛽𝛽−1 = 0 
  𝑠𝑠0 = 𝑆𝑆𝑡𝑡0 

   𝑓𝑓𝑓𝑓𝑟𝑟 𝑛𝑛 = 0,1, … 
     𝑝𝑝𝑛𝑛 = 𝑡𝑡𝑛𝑛 + 𝛽𝛽𝑛𝑛−1𝑝𝑝𝑛𝑛−1 
     𝑞𝑞𝑛𝑛 = 𝑆𝑆𝑝𝑝𝑛𝑛 = 𝑠𝑠𝑛𝑛 + 𝛽𝛽𝑛𝑛−1𝑞𝑞𝑛𝑛−1 
     𝑤𝑤𝑛𝑛 = 𝑀𝑀−1𝑞𝑞𝑛𝑛 
     𝛼𝛼𝑛𝑛 = (𝑡𝑡̅𝑛𝑛 , 𝑠𝑠𝑛𝑛) (𝑞𝑞�𝑛𝑛,𝑤𝑤𝑛𝑛)⁄  
     𝐾𝐾𝐼𝐼𝑛𝑛+1 = 𝐾𝐾𝐼𝐼𝑛𝑛 + 𝛼𝛼𝑛𝑛𝑝𝑝𝑛𝑛 
     𝑡𝑡𝑛𝑛+1 = 𝑡𝑡𝑛𝑛 − 𝛼𝛼𝑛𝑛𝑤𝑤𝑛𝑛 
     𝑖𝑖𝑓𝑓 (‖𝑟𝑟𝑛𝑛+1‖ ‖𝑟𝑟0‖ < 𝛿𝛿⁄ )  𝑏𝑏𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏; 
     𝑠𝑠𝑛𝑛+1 = 𝑆𝑆𝑡𝑡𝑛𝑛+1 
     𝛽𝛽𝑛𝑛 = (𝑡𝑡̅𝑛𝑛+1, 𝑠𝑠𝑛𝑛+1) (𝑡𝑡̅𝑛𝑛 , 𝑠𝑠𝑛𝑛)⁄  
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boundary is a perfect conductor. The analysis model is 
shown in Fig. 3. Table 1 shows the specifications of the 
TEAM 29 model. The highest calculation efficiency is 
achieved when the number of elements contained in one 
subdomain is approximately 170, and the number of 
partial domains is determined such that the number of 
elements contained in one subdomain is equal to 170. 

4.2. Frequency response analysis 

The results of the analysis of TEAM 29 are subjected 
to frequency response analysis in order to confirm the 
accuracy of the developed analytical solver. In order to 
detect the resonant frequency and compare solutions with 
actual measurements, the frequencies of some range are 
analyzed. The frequency band of 60 [MHz] to 140 [MHz] 
is calculated for 2-MHz steps, and the response for every 
frequency step is investigated. In addition, calculations 
near the resonance frequency are performed in 0.4-MHz 
intervals. The computing environment used in the present 
study is a 25-PC cluster equipped with Intel Core i7-
2600K multi-core CPUs (total: 100 cores) and 32 GB 
memory is used. The compiler used is the gcc. In addition, 
Message Passing Interface (MPI) is used for the 
parallelization library. The average calculation time per 
frequency step and the averagely used memory are shown 
in Table 2. Fig. 4 shows the frequency response of the 
magnetic field. The measured and calculated values are 
shown in Table 3. 
 
Table 2.  Specifications of the TEAM 29 model. 

No. of Elements DOFs No. of Subdomains 

121,277 149,668 100×7 
 

 
Fig. 4. Numerical and measured frequency response 
analysis results. 
 

Table 3. Resonance frequencies. (Units: [MHz]. The error rate 
[%] between measured data and the numerical solution is shown in 
parentheses.) 

Resonance 
mode 

Measured 
data 

FDTD 25-
mm mesh Result 

1st 68.6 67 (2.33) 65.6 
(4.37) 

2nd 110 110 109.0 
(0.91) 

3rd 134 134 134.4 
(0.30) 

 
As shown in Fig. 4, a solution resonating around the 

resonance frequency of the actually measured value is 
obtained. In the comparison of the measured and 
calculated values, the error rate is 4.37 [%] in the 1st 
mode, 0.91 [%] in the 2nd mode, and 0.30 [%] in the 3rd 
mode. As the mode increases, the error rate decreases. 
However, it is the same tendency as the analysis result 
obtained by the FDTD method. Moreover, the error rate 
is less than 5 [%], and a solution with high accuracy is 
obtained. 

Therefore, the solution obtained by the developed 
solver is proven to have a sufficiently high accuracy. 
Moreover, in the analysis of the dipole antenna applying 
the PML described in the following sections, the error 
tolerance index is defined as 5 [%] in order to evaluate 
the accuracy. 
 

5. Pre-processing 

5.1. Mesh generation and smoothing 

In many numerical human body models employ a 
binary data format wherein types of organs (including air 
area) are encoded using voxels. In NICT model1, the size 
of the adult male model is 320 voxels wide, 160 voxels 
deep, and 866 voxels high. Represented as the “char” 
type, it occupies 44,339,200 bytes of memory. In this 
research, each voxel is divided into five tetrahedra. 
     Fig. 5 shows a parallel procedure for generating the 
domain decomposed mesh. Firstly, the voxel mesh of the 
numerical human body model is read. Secondly, using 
ParMETIS [7], the input voxel data is divided into a 
number of parts. After part decomposition, all processes 
can perform remaining procedures independently 
without communication. 
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Fig. 5. Procedure for generation of  

the domain decomposed mesh. 
 
     A mesh smoothing technique based on the marching 
cube-like algorithm is employed in part of the 
transformation from voxels to tetrahedras of our mesh 
generation procedure. Fig. 6 shows the schematic of the 
mesh smoothing. The dotted line (A) in Fig. 6 shows the 
original boundary between different materials. Firstly, 
the boundary is smoothed by triangular prisms, as shown 
by the dashed line (B). This is referred to as one-level 
smoothing. Next, by searching for angles of 45 degrees, 
the points on the angles are moved so that these angles 
become 0 degrees, as shown by (C). The solid line (D) 
shows the smoothed boundary obtained by these two-
level smoothing operations. 
 

 
Fig. 6. Schematic of the mesh smoothing. 

5.2. Performance evaluation 

First, accuracy verification for mesh smoothing is 
performed using the voxel mesh model of TEAM 29. An 
accuracy verification is performed using this smoothed 
model. The processing time necessary to smoothing is 
less than 1 second. To detect the resonant frequency and 
compare solutions with actual measurements, the 
resonance state is investigated. The frequency band of 
60–70 MHz is calculated for 0.4 MHz steps around 
resonant frequencies, and the response for every 

frequency step is investigated. Computations are 
performed using 1,152 cores (72 nodes) of the FX10 
supercomputer. A comparison between measured 
resonant frequencies [8] is shown in Table 4. Resonances 
do not occur in the frequency band of 60–70 MHz using 
the original voxel mesh and the one-level smoothing 
mesh. On the other hand, the obtained solution is in very 
good agreement with that obtained using the two-level 
smoothing. The maximum error rate between the 
obtained solution and the measurement is 6.10% in the 
mode.    

 
Table 4. Resonant frequencies in MHz.( ( ): error rate 

between  Measured Data (68.6 MHz) and Numerical Solutions (%)) 
Smoothing type Result 

None (Original voxel model) N/A 
One-level smoothing N/A 
Two-level smoothing 64.4 (6.10) 

 
Fig. 7 shows conditions of the analysis model. The 

dipole antenna is set above the breast. The distance 
between the breast and antenna H is 0.06 m. The antenna 
length L is 0.5 m, which is same as half wavelength at 
300 MHz. The lengths of the model’s sides are x = 0.64 
m, y = 0.32 m, and z = 1.732 m. [6] 
 

 

 
Fig. 7. Conditions of the analysis model. 
 
    Table 5 show the generation conditions and elapsed 
times of the HDD mesh using 12-nodes (96-cores) on the 
FX10. In this paper, full body models of tetrahedral 
elements are generated from 4mm voxel models.  Models 
“1, 2, 3, 4 and 5” shown in Table 5 with 27.71 million 
tetrahedral elements are obtained from the 4mm voxel 
model. 
    The mesh decomposition tool used in this research is 
designed to add the voxel partition function to 
ADVENTURE Metis [9]. As shown in Table 5, the 
longest calculation time is spent on the part and 
subdomain decompositions. It is difficult to reduce the 
calculation cost of the part and subdomain 
decompositions with largest calculation cost in the 
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original ADVENTURE Metis. However, since 
communication among nodes in the subdomain 
decomposition is not required, the calculation time can 
be reduced by increasing the number of nodes. On the 
other hand, the calculation times for the transformation 
of the voxel data to a tetrahedral mesh and the 
communication table generation represent only a small 
part of the overall calculation time and the large-scale 
initial mesh generation is not required in advance. These 
figures of merit demonstrate that the developed function 
is very effective.  
 
Table 5. Generation conditions and elapsed time for the 
HDD mesh of 4mm. 

Mode
l 

Num. 
of 

parts 

Num. 
of 

doms 
/part 

Total 
(sec) 

Part 
decomp 
-osition 

(sec) 

Tetra & 
Com. 
table 
(sec) 

Subdomai
n 

decomposi
tion (sec) 

1 300 1000 50.12 20.02 0.09 15.25 
2 600 500 40.64 21.77 0.08 8.85 
3 1200 250 40.21 23.78 0.08 8.37 
4 2400 125 41.35 26.20 0.09 5.85 
5 4800 62 44.21 30.23 0.11 5.83 

 

6. Numerical experiments 

6.1. Performance evaluation 

The electromagnetic field in the human body is 
analyzed via refined meshes of Model 1 in Tables 3. All 
computations are performed using Oakleaf-FX10 
supercomputer at the University of Tokyo.  We analyzed 
frequencies of 1 (MHz), 8 (MHz), 70 (MHz) and 300 
(MHz) using the full-wave electromagnetic field analysis 
based on the DDM. The electromagnetic field source is a 
dipole antenna assumed to have a current source of 0.8 
(A). In the analyses using NICT numeric human body 
models, it is necessary for the user to provide the electric 
conductivity and the permittivity of the material ID for 
each internal organ. Electric conductivities and relative 
permittivities given to internal organs. These physical 
values are based on the human organs property database 
for computational biomechanics open to the public by the 
Institute of Physical and Chemical Research (RIKEN) in 
Japan [10]. 

6.2. Performance evaluation 

    Full-wave electromagnetic analyses [11] are 
performed using the 2mm model that is refined Model1 
once.  The model has 220 million tetrahedral elements. 
Computations are performed using 75-nodes (150 

processes x 8 threads) of the Oakleaf-FX10. The iteration 
count and calculation time for each frequency comparing 
COCG method and COCR method are shown in Table 6.  
     The number of iterations required by the DDM is 
largest for the lowest frequency (1 MHz) in each iterative 
method. Generally, the matrix equation becomes semi-
definite in the full-wave electromagnetic analysis based 
on the vector wave equation. However, when the 
frequency becomes lower, the matrix equation becomes 
non-definite. Both results indicate this thing. Fig. 8 
shows convergence histories in case of 1 (MHz) using 
2mm model. As a result, the iterative calculation is 
improved drastically by using COCR method as interface 
solver in DDM. In the previous research by Sogabe and 
Chou, COCR method solves the matrix which size is 
2,534 x 2,534[4]. In this result, the number of iteration is 
reduced from the result by using COCG method. On the 
other hand, more conspicuous improvement is seen by 
using COCR method in the interface problem with the 
anatomical human model.  
     Then, to confirm performances of the huge-scale 
analysis, the analyses in the smallest frequency are 
performed using 1mm model that is refined Model1 twice 
as the most difficult case of the computation. The model 
has 1,760 million tetrahedral elements. Computations are 
performed using 600-nodes (1,200 processes x 8 threads) 
of the Oakleaf-FX10. The iteration count and calculation 
time in 1 MHz comparing COCG method and COCR 
method are shown in Table 7. Fig. 9 shows convergence 
histories. We succeed calculation using huge-scale model 
that has 1,760 million tetrahedral elements. The iterative 
calculation is also improved by using COCR method in 
this case. 
 

Table 6. Numerical result using 2mm Model. 
Frequency 

(MHz) Iter. method Num. 
of Iter. 

Time 
(sec) 

Peak 
(%) 

1 COCG 13,798 10,330 4.97 
COCR 477 465 3.86 

8 COCG 1,383 1,107 4.65 
COCR 221 278 3.02 

70 COCG 793 675 4.38 
COCR 128 197 2.50 

300 COCG 747 628 4.43 
COCR 86 160 2.09 
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Fig. 8.  Convergence histories in case of 1 MHz using 
2mm model from once refined MODEL1. 
 

Table 7.  Numerical result using 1mm model. 
Frequency 

(MHz) 
Iter. 

method 
Num. 
of Iter. 

Time 
(sec) 

Peak 
(%) 

1 COCG 7,348 7,071 4.37 
COCR 1,189 1,319 3.82 

 

 
Fig. 9.  Convergence histories in case of 1 MHz using 
1mm model from twice refined MODEL1. 
 

7. Conclusion 

     In this paper, we propose parallel mesh generation 
method with mesh smoothing, and show to be able to 
generate large-scale mesh very effective. Then, we 
evaluated the performance of two kinds of iterative 
method by numerical experiments using large-scale 
human body model. As the results, selecting iterative 
method is very important for high-frequency 
electromagnetic field analysis using anatomical human 
model. The COCR method is expected to reduce both 
iteration counts and computation time compared to the 
COCG method in the analysis using huge-scale human 
body model.  
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